未验证 提交 7c1755d9 编写于 作者: Y Yu Yang 提交者: GitHub

Assign Operator. (#5531)

* Assign Operator.

Out=X, when type in [LoDTensor/SelectedRows/LoDTensorArray]

* Follow comments
上级 291f6b4e
......@@ -27,10 +27,32 @@ inline VarDesc::VarType ToVarType(std::type_index type) {
return VarDesc_VarType_LOD_RANK_TABLE;
} else if (type.hash_code() == typeid(LoDTensorArray).hash_code()) {
return VarDesc_VarType_LOD_TENSOR_ARRAY;
} else if (type.hash_code() == typeid(SelectedRows).hash_code()) {
return VarDesc_VarType_SELECTED_ROWS;
} else {
PADDLE_THROW("ToVarType:Unsupported type %s", type.name());
}
}
template <typename Visitor>
inline void VisitVarType(const Variable& var, Visitor visitor) {
switch (ToVarType(var.Type())) {
case VarDesc_VarType_LOD_TENSOR:
visitor(var.Get<framework::LoDTensor>());
return;
case VarDesc_VarType_LOD_RANK_TABLE:
visitor(var.Get<LoDRankTable>());
return;
case VarDesc_VarType_LOD_TENSOR_ARRAY:
visitor(var.Get<LoDTensorArray>());
return;
case VarDesc_VarType_SELECTED_ROWS:
visitor(var.Get<SelectedRows>());
return;
default:
PADDLE_THROW("Not supported visit type, %d", ToVarType(var.Type()));
}
}
} // namespace framework
} // namespace paddle
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/framework/data_type.h"
#include "paddle/framework/op_registry.h"
#include "paddle/framework/var_type.h"
namespace paddle {
namespace operators {
class AssignFunctor {
public:
AssignFunctor(framework::Variable *out,
const platform::DeviceContext &dev_ctx)
: out_(out), dev_ctx_(dev_ctx) {}
void operator()(const framework::LoDTensor &lod_tensor) const {
auto &out_tensor = *out_->GetMutable<framework::LoDTensor>();
copy_tensor(lod_tensor, &out_tensor);
}
void operator()(const framework::LoDTensorArray &array) const {
auto &out_array = *out_->GetMutable<framework::LoDTensorArray>();
out_array.resize(array.size());
for (size_t i = 0; i < array.size(); ++i) {
copy_tensor(array[i], &out_array[i]);
}
}
void operator()(const framework::SelectedRows &rows) const {
framework::SelectedRows &out_rows =
*out_->GetMutable<framework::SelectedRows>();
out_rows.set_rows(rows.rows());
out_rows.set_height(rows.height());
auto &t = rows.value();
out_rows.mutable_value()->CopyFrom(t, t.place(), dev_ctx_);
}
template <typename T>
void operator()(const T &v) const {
PADDLE_THROW("Not support type for assign op %s", typeid(T).name());
}
private:
void copy_tensor(const framework::LoDTensor &lod_tensor,
framework::LoDTensor *out) const {
auto &out_tensor = *out;
out_tensor.CopyFrom(lod_tensor, lod_tensor.place(), dev_ctx_);
out_tensor.set_lod(lod_tensor.lod());
}
framework::Variable *out_;
const platform::DeviceContext &dev_ctx_;
};
class AssignOp : public framework::OperatorBase {
public:
AssignOp(const std::string &type, const framework::VariableNameMap &inputs,
const framework::VariableNameMap &outputs,
const framework::AttributeMap &attrs)
: OperatorBase(type, inputs, outputs, attrs) {}
void Run(const framework::Scope &scope,
const platform::DeviceContext &dev_ctx) const override {
auto *x = scope.FindVar(Input("X"));
if (x == nullptr) {
return;
}
auto *out = scope.FindVar(Output("Out"));
PADDLE_ENFORCE(
out != nullptr,
"The Output(Out) should not be null if the Input(X) is set.");
framework::VisitVarType(*x, AssignFunctor(out, dev_ctx));
}
};
class AssignOpProtoMaker : public framework::OpProtoAndCheckerMaker {
public:
AssignOpProtoMaker(framework::OpProto *proto,
framework::OpAttrChecker *op_checker)
: OpProtoAndCheckerMaker(proto, op_checker) {
AddInput("X",
"(LoDTensor, SelectedRows or LoDTensorArray) The input variable "
"could be LoDTensor, SelectedRows or LoDTensorArray.")
.AsDispensable();
AddOutput("Out",
"(LoDTensor, SelectedRows or LoDTensorArray) The type of output "
"is the same as input X.");
AddComment(R"DOC(Assign Operator
Out = X, when type in [LoDTensor/SelectedRows/LoDTensorArray]
raise error if the type is not listed above.
)DOC");
}
};
class AssignInferShape : public framework::InferShapeBase {
public:
void operator()(framework::InferShapeContext *context) const override {
if (context->HasInput("X")) {
auto type = context->GetInputsVarType("X")[0];
if (type == framework::VarDesc_VarType_SELECTED_ROWS ||
type == framework::VarDesc_VarType_LOD_TENSOR) {
context->SetOutputDim("Out", context->GetInputDim("X"));
}
}
}
};
class AssignGradMaker : public framework::SingleGradOpDescMaker {
public:
using framework::SingleGradOpDescMaker::SingleGradOpDescMaker;
protected:
std::unique_ptr<framework::OpDescBind> Apply() const override {
auto *op = new framework::OpDescBind();
op->SetType("assign");
op->SetInput("X", OutputGrad("Out"));
op->SetOutput("Out", InputGrad("X"));
return std::unique_ptr<framework::OpDescBind>(op);
}
};
} // namespace operators
} // namespace paddle
namespace ops = paddle::operators;
REGISTER_OPERATOR(assign, ops::AssignOp, ops::AssignGradMaker,
ops::AssignInferShape, ops::AssignOpProtoMaker);
import op_test
import numpy
import unittest
class TestAssignOp(op_test.OpTest):
def setUp(self):
self.op_type = "assign"
x = numpy.random.random(size=(100, 10))
self.inputs = {'X': x}
self.outputs = {'Out': x}
def test_forward(self):
self.check_output()
def test_backward(self):
self.check_grad(['X'], 'Out')
if __name__ == '__main__':
unittest.main()
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册