Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleDetection
提交
7b60e7d8
P
PaddleDetection
项目概览
PaddlePaddle
/
PaddleDetection
1 年多 前同步成功
通知
696
Star
11112
Fork
2696
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
184
列表
看板
标记
里程碑
合并请求
40
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
184
Issue
184
列表
看板
标记
里程碑
合并请求
40
合并请求
40
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
7b60e7d8
编写于
2月 18, 2022
作者:
S
shangliang Xu
提交者:
GitHub
2月 18, 2022
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
[TIPC] add benchmark for yolov3, mask_rcnn (#5224)
上级
92872581
变更
16
隐藏空白更改
内联
并排
Showing
16 changed file
with
439 addition
and
3 deletion
+439
-3
test_tipc/configs/mask_rcnn/mask_rcnn_r50_1x_coco_train_infer_python.txt
...gs/mask_rcnn/mask_rcnn_r50_1x_coco_train_infer_python.txt
+7
-1
test_tipc/configs/mask_rcnn/mask_rcnn_r50_fpn_1x_coco_train_infer_python.txt
...ask_rcnn/mask_rcnn_r50_fpn_1x_coco_train_infer_python.txt
+7
-1
test_tipc/configs/yolov3/yolov3_darknet53_270e_coco_train_infer_python.txt
.../yolov3/yolov3_darknet53_270e_coco_train_infer_python.txt
+7
-1
test_tipc/static/README.MD
test_tipc/static/README.MD
+19
-0
test_tipc/static/mask_rcnn_r50_1x_coco/N1C1/mask_rcnn_r50_1x_coco_bs2_fp32_SingleP_DP.sh
...1x_coco/N1C1/mask_rcnn_r50_1x_coco_bs2_fp32_SingleP_DP.sh
+17
-0
test_tipc/static/mask_rcnn_r50_1x_coco/N1C8/mask_rcnn_r50_1x_coco_bs2_fp32_MultiP_DP.sh
..._1x_coco/N1C8/mask_rcnn_r50_1x_coco_bs2_fp32_MultiP_DP.sh
+13
-0
test_tipc/static/mask_rcnn_r50_1x_coco/benchmark_common/prepare.sh
.../static/mask_rcnn_r50_1x_coco/benchmark_common/prepare.sh
+15
-0
test_tipc/static/mask_rcnn_r50_1x_coco/benchmark_common/run_benchmark.sh
...c/mask_rcnn_r50_1x_coco/benchmark_common/run_benchmark.sh
+88
-0
test_tipc/static/mask_rcnn_r50_fpn_1x_coco/N1C1/mask_rcnn_r50_fpn_1x_coco_bs2_fp32_SingleP_DP.sh
...oco/N1C1/mask_rcnn_r50_fpn_1x_coco_bs2_fp32_SingleP_DP.sh
+17
-0
test_tipc/static/mask_rcnn_r50_fpn_1x_coco/N1C8/mask_rcnn_r50_fpn_1x_coco_bs2_fp32_MultiP_DP.sh
...coco/N1C8/mask_rcnn_r50_fpn_1x_coco_bs2_fp32_MultiP_DP.sh
+13
-0
test_tipc/static/mask_rcnn_r50_fpn_1x_coco/benchmark_common/prepare.sh
...tic/mask_rcnn_r50_fpn_1x_coco/benchmark_common/prepare.sh
+15
-0
test_tipc/static/mask_rcnn_r50_fpn_1x_coco/benchmark_common/run_benchmark.sh
...sk_rcnn_r50_fpn_1x_coco/benchmark_common/run_benchmark.sh
+88
-0
test_tipc/static/yolov3_darknet53_270e_coco/N1C1/yolov3_darknet53_270e_coco_bs8_fp32_SingleP_DP.sh
...co/N1C1/yolov3_darknet53_270e_coco_bs8_fp32_SingleP_DP.sh
+17
-0
test_tipc/static/yolov3_darknet53_270e_coco/N1C8/yolov3_darknet53_270e_coco_bs8_fp32_MultiP_DP.sh
...oco/N1C8/yolov3_darknet53_270e_coco_bs8_fp32_MultiP_DP.sh
+13
-0
test_tipc/static/yolov3_darknet53_270e_coco/benchmark_common/prepare.sh
...ic/yolov3_darknet53_270e_coco/benchmark_common/prepare.sh
+15
-0
test_tipc/static/yolov3_darknet53_270e_coco/benchmark_common/run_benchmark.sh
...ov3_darknet53_270e_coco/benchmark_common/run_benchmark.sh
+88
-0
未找到文件。
test_tipc/configs/mask_rcnn/mask_rcnn_r50_1x_coco_train_infer_python.txt
浏览文件 @
7b60e7d8
...
...
@@ -48,4 +48,10 @@ inference:./deploy/python/infer.py
--image_dir:./dataset/coco/test2017/
--save_log_path:null
--run_benchmark:True
--trt_max_shape:1600
\ No newline at end of file
--trt_max_shape:1600
===========================train_benchmark_params==========================
batch_size:2|4
fp_items:fp32|fp16
epoch:1
--profiler_options:batch_range=[10,20];state=GPU;tracer_option=Default;profile_path=model.profile
flags:null
\ No newline at end of file
test_tipc/configs/mask_rcnn/mask_rcnn_r50_fpn_1x_coco_train_infer_python.txt
浏览文件 @
7b60e7d8
...
...
@@ -48,4 +48,10 @@ inference:./deploy/python/infer.py
--image_dir:./dataset/coco/test2017/
--save_log_path:null
--run_benchmark:True
--trt_max_shape:1600
\ No newline at end of file
--trt_max_shape:1600
===========================train_benchmark_params==========================
batch_size:2|4
fp_items:fp32|fp16
epoch:1
--profiler_options:batch_range=[10,20];state=GPU;tracer_option=Default;profile_path=model.profile
flags:null
\ No newline at end of file
test_tipc/configs/yolov3/yolov3_darknet53_270e_coco_train_infer_python.txt
浏览文件 @
7b60e7d8
...
...
@@ -48,4 +48,10 @@ inference:./deploy/python/infer.py
--image_dir:./dataset/coco/test2017/
--save_log_path:null
--run_benchmark:True
null:null
\ No newline at end of file
null:null
===========================train_benchmark_params==========================
batch_size:8
fp_items:fp32|fp16
epoch:1
--profiler_options:batch_range=[10,20];state=GPU;tracer_option=Default;profile_path=model.profile
flags:null
\ No newline at end of file
test_tipc/static/README.MD
0 → 100644
浏览文件 @
7b60e7d8
# PaddleDetection 下静态图benchmark模型执行说明
静态图benchmark测试脚本说明
# 目录说明
# Docker 运行环境
docker image: registry.baidubce.com/paddlepaddle/paddle:latest-dev-cuda11.2-cudnn8-gcc82
paddle = 2.2.2
python = 3.7
# 运行benchmark测试步骤
git clone https://github.com/PaddlePaddle/PaddleDetection.git
cd PaddleDetection
# 准备数据
bash test_tipc/static/${model_item}/benchmark_common/prepare.sh
# 运行模型
## 单卡(自动运行打开Profiling)
export CUDA_VISIBLE_DEVICES=0
bash test_tipc/static/${model_item}/N1C1/yolov3_darknet53_270e_coco_bs8_fp32_SingleP_DP.sh
## 多卡
export CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7
bash test_tipc/static/${model_item}/N1C8/yolov3_darknet53_270e_coco_bs8_fp32_MultiP_DP.sh
test_tipc/static/mask_rcnn_r50_1x_coco/N1C1/mask_rcnn_r50_1x_coco_bs2_fp32_SingleP_DP.sh
0 → 100644
浏览文件 @
7b60e7d8
model_item
=
mask_rcnn_r50_1x_coco
bs_item
=
2
fp_item
=
fp32
run_process_type
=
SingleP
run_mode
=
DP
device_num
=
N1C1
max_iter
=
500
num_workers
=
2
# get data
bash test_tipc/static/
${
model_item
}
/benchmark_common/prepare.sh
# run
bash test_tipc/static/
${
model_item
}
/benchmark_common/run_benchmark.sh
${
model_item
}
${
bs_item
}
${
fp_item
}
${
run_process_type
}
${
run_mode
}
${
device_num
}
${
max_iter
}
${
num_workers
}
2>&1
;
# run profiling
sleep
10
;
export
PROFILING
=
true
bash test_tipc/static/
${
model_item
}
/benchmark_common/run_benchmark.sh
${
model_item
}
${
bs_item
}
${
fp_item
}
${
run_process_type
}
${
run_mode
}
${
device_num
}
${
max_iter
}
${
num_workers
}
2>&1
;
test_tipc/static/mask_rcnn_r50_1x_coco/N1C8/mask_rcnn_r50_1x_coco_bs2_fp32_MultiP_DP.sh
0 → 100644
浏览文件 @
7b60e7d8
model_item
=
mask_rcnn_r50_1x_coco
bs_item
=
2
fp_item
=
fp32
run_process_type
=
MultiP
run_mode
=
DP
device_num
=
N1C8
max_iter
=
500
num_workers
=
2
# get data
bash test_tipc/static/
${
model_item
}
/benchmark_common/prepare.sh
# run
bash test_tipc/static/
${
model_item
}
/benchmark_common/run_benchmark.sh
${
model_item
}
${
bs_item
}
${
fp_item
}
${
run_process_type
}
${
run_mode
}
${
device_num
}
${
max_iter
}
${
num_workers
}
2>&1
;
test_tipc/static/mask_rcnn_r50_1x_coco/benchmark_common/prepare.sh
0 → 100644
浏览文件 @
7b60e7d8
#!/usr/bin/env bash
# 执行路径在模型库的根目录下
################################# 安装框架 如:
echo
"*******prepare benchmark start ***********"
pip
install
-U
pip
-i
https://pypi.tuna.tsinghua.edu.cn/simple
echo
`
pip
--version
`
pip
install
Cython
-i
https://pypi.tuna.tsinghua.edu.cn/simple
python
-m
pip
install
paddlepaddle-gpu
==
2.2.2.post112
-f
https://www.paddlepaddle.org.cn/whl/linux/mkl/avx/stable.html
pip
install
-r
requirements.txt
-i
https://pypi.tuna.tsinghua.edu.cn/simple
################################# 准备训练数据 如:
wget
-nc
-P
static/data/coco/ https://paddledet.bj.bcebos.com/data/coco_benchmark.tar
cd
./static/data/coco/
&&
tar
-xf
coco_benchmark.tar
&&
mv
-u
coco_benchmark/
*
.
rm
-rf
coco_benchmark/
&&
cd
../../../
echo
"*******prepare benchmark end***********"
test_tipc/static/mask_rcnn_r50_1x_coco/benchmark_common/run_benchmark.sh
0 → 100644
浏览文件 @
7b60e7d8
#!/usr/bin/env bash
# Test training benchmark for a model.
# Usage:bash run_benchmark.sh ${model_item} ${bs_item} ${fp_item} ${run_process_type} ${run_mode} ${device_num}
function
_set_params
(){
model_item
=
${
1
:-
"model_item"
}
# (必选) 模型 item
base_batch_size
=
${
2
:-
"2"
}
# (必选) 如果是静态图单进程,则表示每张卡上的BS,需在训练时*卡数
fp_item
=
${
3
:-
"fp32"
}
# (必选) fp32|fp16
run_process_type
=
${
4
:-
"SingleP"
}
# (必选) 单进程 SingleP|多进程 MultiP
run_mode
=
${
5
:-
"DP"
}
# (必选) MP模型并行|DP数据并行|PP流水线并行|混合并行DP1-MP1-PP1|DP1-MP4-PP1
device_num
=
${
6
:-
"N1C1"
}
# (必选) 使用的卡数量,N1C1|N1C8|N4C32 (4机32卡)
profiling
=
${
PROFILING
:-
"false"
}
# (必选) Profiling 开关,默认关闭,通过全局变量传递
model_repo
=
"PaddleDetection"
# (必选) 模型套件的名字
speed_unit
=
"samples/sec"
# (必选)速度指标单位
skip_steps
=
10
# (必选)解析日志,跳过模型前几个性能不稳定的step
keyword
=
"ips:"
# (必选)解析日志,筛选出性能数据所在行的关键字
convergence_key
=
"loss:"
# (可选)解析日志,筛选出收敛数据所在行的关键字 如:convergence_key="loss:"
max_iter
=
${
7
:-
"500"
}
# (可选)需保证模型执行时间在5分钟内,需要修改代码提前中断的直接提PR 合入套件;或使用max_epoch参数
num_workers
=
${
8
:-
"8"
}
# (可选)
# 以下为通用执行命令,无特殊可不用修改
model_name
=
${
model_item
}
_bs
${
base_batch_size
}
_
${
fp_item
}
_
${
run_process_type
}
_
${
run_mode
}
# (必填) 且格式不要改动,与竞品名称对齐
device
=
${
CUDA_VISIBLE_DEVICES
//,/
}
arr
=(
${
device
}
)
num_gpu_devices
=
${#
arr
[*]
}
run_log_path
=
${
TRAIN_LOG_DIR
:-
$(
pwd
)
}
# (必填) TRAIN_LOG_DIR benchmark框架设置该参数为全局变量
profiling_log_path
=
${
PROFILING_LOG_DIR
:-
$(
pwd
)
}
# (必填) PROFILING_LOG_DIR benchmark框架设置该参数为全局变量
speed_log_path
=
${
LOG_PATH_INDEX_DIR
:-
$(
pwd
)
}
train_log_file
=
${
run_log_path
}
/
${
model_repo
}
_
${
model_name
}
_
${
device_num
}
_log
profiling_log_file
=
${
profiling_log_path
}
/
${
model_repo
}
_
${
model_name
}
_
${
device_num
}
_profiling
speed_log_file
=
${
speed_log_path
}
/
${
model_repo
}
_
${
model_name
}
_
${
device_num
}
_speed
}
function
_train
(){
cd
./static
batch_size
=
${
base_batch_size
}
# 如果模型跑多卡单进程时,请在_train函数中计算出多卡需要的bs
echo
"current CUDA_VISIBLE_DEVICES=
${
CUDA_VISIBLE_DEVICES
}
, model_name=
${
model_name
}
, device_num=
${
device_num
}
, is profiling=
${
profiling
}
"
if
[
${
profiling
}
=
"true"
]
;
then
log_file
=
${
profiling_log_file
}
is_profiler
=
1
else
log_file
=
${
train_log_file
}
is_profiler
=
0
fi
if
[
${
fp_item
}
=
"fp16"
]
;
then
use_fp16_cmd
=
"--fp16"
else
use_fp16_cmd
=
""
fi
train_cmd
=
"-c configs/mask_rcnn_r50_1x.yml -o LearningRate.base_lr=0.001 snapshot_iter=100000
\
TrainReader.batch_size==
${
batch_size
}
\
max_iters=
${
max_iter
}
log_iter=1
\
TrainReader.worker_num==
${
num_workers
}
${
use_fp16_cmd
}
\
--is_profiler=
${
is_profiler
}
"
# 以下为通用执行命令,无特殊可不用修改
case
${
run_mode
}
in
DP
)
if
[[
${
run_process_type
}
=
"SingleP"
]]
;
then
echo
"run
${
run_mode
}
${
run_process_type
}
"
train_cmd
=
"python -u tools/train.py
${
train_cmd
}
"
elif
[[
${
run_process_type
}
=
"MultiP"
]]
;
then
rm
-rf
./mylog
train_cmd
=
"python -m paddle.distributed.launch --log_dir=./mylog --gpus=
$CUDA_VISIBLE_DEVICES
\
tools/train.py
${
train_cmd
}
"
else
echo
"run
${
run_mode
}
${
run_process_type
}
error"
,
exit
1
fi
;;
DP1-MP1-PP1
)
echo
"run run_mode: DP1-MP1-PP1"
;;
*
)
echo
"choose run_mode "
;
exit
1
;
esac
echo
"train_cmd:
${
train_cmd
}
log_file:
${
log_file
}
"
timeout
15m
${
train_cmd
}
>
${
log_file
}
2>&1
if
[
$?
-ne
0
]
;
then
echo
-e
"
${
model_name
}
, FAIL"
else
echo
-e
"
${
model_name
}
, SUCCESS"
fi
kill
-9
`
ps
-ef
|grep
'python'
|awk
'{print $2}'
`
if
[
${
run_process_type
}
=
"MultiP"
-a
-d
mylog
]
;
then
rm
${
log_file
}
cp
mylog/workerlog.0
${
log_file
}
fi
cd
../
}
source
${
BENCHMARK_ROOT
}
/scripts/run_model.sh
# 在该脚本中会对符合benchmark规范的log使用analysis.py 脚本进行性能数据解析;如果不联调只想要产出训练log可以注掉本行,提交时需打开
_set_params
$@
_train
# 如果只产出训练log,不解析,可取消注释
_run
# 该函数在run_model.sh中,执行时会调用_train; 如果不联调只产出训练log可以注掉本行,提交时需打开
test_tipc/static/mask_rcnn_r50_fpn_1x_coco/N1C1/mask_rcnn_r50_fpn_1x_coco_bs2_fp32_SingleP_DP.sh
0 → 100644
浏览文件 @
7b60e7d8
model_item
=
mask_rcnn_r50_fpn_1x_coco
bs_item
=
2
fp_item
=
fp32
run_process_type
=
SingleP
run_mode
=
DP
device_num
=
N1C1
max_iter
=
500
num_workers
=
2
# get data
bash test_tipc/static/
${
model_item
}
/benchmark_common/prepare.sh
# run
bash test_tipc/static/
${
model_item
}
/benchmark_common/run_benchmark.sh
${
model_item
}
${
bs_item
}
${
fp_item
}
${
run_process_type
}
${
run_mode
}
${
device_num
}
${
max_iter
}
${
num_workers
}
2>&1
;
# run profiling
sleep
10
;
export
PROFILING
=
true
bash test_tipc/static/
${
model_item
}
/benchmark_common/run_benchmark.sh
${
model_item
}
${
bs_item
}
${
fp_item
}
${
run_process_type
}
${
run_mode
}
${
device_num
}
${
max_iter
}
${
num_workers
}
2>&1
;
test_tipc/static/mask_rcnn_r50_fpn_1x_coco/N1C8/mask_rcnn_r50_fpn_1x_coco_bs2_fp32_MultiP_DP.sh
0 → 100644
浏览文件 @
7b60e7d8
model_item
=
mask_rcnn_r50_fpn_1x_coco
bs_item
=
2
fp_item
=
fp32
run_process_type
=
MultiP
run_mode
=
DP
device_num
=
N1C8
max_iter
=
500
num_workers
=
2
# get data
bash test_tipc/static/
${
model_item
}
/benchmark_common/prepare.sh
# run
bash test_tipc/static/
${
model_item
}
/benchmark_common/run_benchmark.sh
${
model_item
}
${
bs_item
}
${
fp_item
}
${
run_process_type
}
${
run_mode
}
${
device_num
}
${
max_iter
}
${
num_workers
}
2>&1
;
test_tipc/static/mask_rcnn_r50_fpn_1x_coco/benchmark_common/prepare.sh
0 → 100644
浏览文件 @
7b60e7d8
#!/usr/bin/env bash
# 执行路径在模型库的根目录下
################################# 安装框架 如:
echo
"*******prepare benchmark start ***********"
pip
install
-U
pip
-i
https://pypi.tuna.tsinghua.edu.cn/simple
echo
`
pip
--version
`
pip
install
Cython
-i
https://pypi.tuna.tsinghua.edu.cn/simple
python
-m
pip
install
paddlepaddle-gpu
==
2.2.2.post112
-f
https://www.paddlepaddle.org.cn/whl/linux/mkl/avx/stable.html
pip
install
-r
requirements.txt
-i
https://pypi.tuna.tsinghua.edu.cn/simple
################################# 准备训练数据 如:
wget
-nc
-P
static/data/coco/ https://paddledet.bj.bcebos.com/data/coco_benchmark.tar
cd
./static/data/coco/
&&
tar
-xf
coco_benchmark.tar
&&
mv
-u
coco_benchmark/
*
.
rm
-rf
coco_benchmark/
&&
cd
../../../
echo
"*******prepare benchmark end***********"
test_tipc/static/mask_rcnn_r50_fpn_1x_coco/benchmark_common/run_benchmark.sh
0 → 100644
浏览文件 @
7b60e7d8
#!/usr/bin/env bash
# Test training benchmark for a model.
# Usage:bash run_benchmark.sh ${model_item} ${bs_item} ${fp_item} ${run_process_type} ${run_mode} ${device_num}
function
_set_params
(){
model_item
=
${
1
:-
"model_item"
}
# (必选) 模型 item
base_batch_size
=
${
2
:-
"2"
}
# (必选) 如果是静态图单进程,则表示每张卡上的BS,需在训练时*卡数
fp_item
=
${
3
:-
"fp32"
}
# (必选) fp32|fp16
run_process_type
=
${
4
:-
"SingleP"
}
# (必选) 单进程 SingleP|多进程 MultiP
run_mode
=
${
5
:-
"DP"
}
# (必选) MP模型并行|DP数据并行|PP流水线并行|混合并行DP1-MP1-PP1|DP1-MP4-PP1
device_num
=
${
6
:-
"N1C1"
}
# (必选) 使用的卡数量,N1C1|N1C8|N4C32 (4机32卡)
profiling
=
${
PROFILING
:-
"false"
}
# (必选) Profiling 开关,默认关闭,通过全局变量传递
model_repo
=
"PaddleDetection"
# (必选) 模型套件的名字
speed_unit
=
"samples/sec"
# (必选)速度指标单位
skip_steps
=
10
# (必选)解析日志,跳过模型前几个性能不稳定的step
keyword
=
"ips:"
# (必选)解析日志,筛选出性能数据所在行的关键字
convergence_key
=
"loss:"
# (可选)解析日志,筛选出收敛数据所在行的关键字 如:convergence_key="loss:"
max_iter
=
${
7
:-
"500"
}
# (可选)需保证模型执行时间在5分钟内,需要修改代码提前中断的直接提PR 合入套件;或使用max_epoch参数
num_workers
=
${
8
:-
"8"
}
# (可选)
# 以下为通用执行命令,无特殊可不用修改
model_name
=
${
model_item
}
_bs
${
base_batch_size
}
_
${
fp_item
}
_
${
run_process_type
}
_
${
run_mode
}
# (必填) 且格式不要改动,与竞品名称对齐
device
=
${
CUDA_VISIBLE_DEVICES
//,/
}
arr
=(
${
device
}
)
num_gpu_devices
=
${#
arr
[*]
}
run_log_path
=
${
TRAIN_LOG_DIR
:-
$(
pwd
)
}
# (必填) TRAIN_LOG_DIR benchmark框架设置该参数为全局变量
profiling_log_path
=
${
PROFILING_LOG_DIR
:-
$(
pwd
)
}
# (必填) PROFILING_LOG_DIR benchmark框架设置该参数为全局变量
speed_log_path
=
${
LOG_PATH_INDEX_DIR
:-
$(
pwd
)
}
train_log_file
=
${
run_log_path
}
/
${
model_repo
}
_
${
model_name
}
_
${
device_num
}
_log
profiling_log_file
=
${
profiling_log_path
}
/
${
model_repo
}
_
${
model_name
}
_
${
device_num
}
_profiling
speed_log_file
=
${
speed_log_path
}
/
${
model_repo
}
_
${
model_name
}
_
${
device_num
}
_speed
}
function
_train
(){
cd
./static
batch_size
=
${
base_batch_size
}
# 如果模型跑多卡单进程时,请在_train函数中计算出多卡需要的bs
echo
"current CUDA_VISIBLE_DEVICES=
${
CUDA_VISIBLE_DEVICES
}
, model_name=
${
model_name
}
, device_num=
${
device_num
}
, is profiling=
${
profiling
}
"
if
[
${
profiling
}
=
"true"
]
;
then
log_file
=
${
profiling_log_file
}
is_profiler
=
1
else
log_file
=
${
train_log_file
}
is_profiler
=
0
fi
if
[
${
fp_item
}
=
"fp16"
]
;
then
use_fp16_cmd
=
"--fp16"
else
use_fp16_cmd
=
""
fi
train_cmd
=
"-c configs/mask_rcnn_r50_fpn_1x.yml -o LearningRate.base_lr=0.001 snapshot_iter=100000
\
TrainReader.batch_size==
${
batch_size
}
\
max_iters=
${
max_iter
}
log_iter=1
\
TrainReader.worker_num==
${
num_workers
}
${
use_fp16_cmd
}
\
--is_profiler=
${
is_profiler
}
"
# 以下为通用执行命令,无特殊可不用修改
case
${
run_mode
}
in
DP
)
if
[[
${
run_process_type
}
=
"SingleP"
]]
;
then
echo
"run
${
run_mode
}
${
run_process_type
}
"
train_cmd
=
"python -u tools/train.py
${
train_cmd
}
"
elif
[[
${
run_process_type
}
=
"MultiP"
]]
;
then
rm
-rf
./mylog
train_cmd
=
"python -m paddle.distributed.launch --log_dir=./mylog --gpus=
$CUDA_VISIBLE_DEVICES
\
tools/train.py
${
train_cmd
}
"
else
echo
"run
${
run_mode
}
${
run_process_type
}
error"
,
exit
1
fi
;;
DP1-MP1-PP1
)
echo
"run run_mode: DP1-MP1-PP1"
;;
*
)
echo
"choose run_mode "
;
exit
1
;
esac
echo
"train_cmd:
${
train_cmd
}
log_file:
${
log_file
}
"
timeout
15m
${
train_cmd
}
>
${
log_file
}
2>&1
if
[
$?
-ne
0
]
;
then
echo
-e
"
${
model_name
}
, FAIL"
else
echo
-e
"
${
model_name
}
, SUCCESS"
fi
kill
-9
`
ps
-ef
|grep
'python'
|awk
'{print $2}'
`
if
[
${
run_process_type
}
=
"MultiP"
-a
-d
mylog
]
;
then
rm
${
log_file
}
cp
mylog/workerlog.0
${
log_file
}
fi
cd
../
}
source
${
BENCHMARK_ROOT
}
/scripts/run_model.sh
# 在该脚本中会对符合benchmark规范的log使用analysis.py 脚本进行性能数据解析;如果不联调只想要产出训练log可以注掉本行,提交时需打开
_set_params
$@
_train
# 如果只产出训练log,不解析,可取消注释
_run
# 该函数在run_model.sh中,执行时会调用_train; 如果不联调只产出训练log可以注掉本行,提交时需打开
test_tipc/static/yolov3_darknet53_270e_coco/N1C1/yolov3_darknet53_270e_coco_bs8_fp32_SingleP_DP.sh
0 → 100644
浏览文件 @
7b60e7d8
model_item
=
yolov3_darknet53_270e_coco
bs_item
=
8
fp_item
=
fp32
run_process_type
=
SingleP
run_mode
=
DP
device_num
=
N1C1
max_iter
=
500
num_workers
=
8
# get data
bash test_tipc/static/
${
model_item
}
/benchmark_common/prepare.sh
# run
bash test_tipc/static/
${
model_item
}
/benchmark_common/run_benchmark.sh
${
model_item
}
${
bs_item
}
${
fp_item
}
${
run_process_type
}
${
run_mode
}
${
device_num
}
${
max_iter
}
${
num_workers
}
2>&1
;
# run profiling
sleep
10
;
export
PROFILING
=
true
bash test_tipc/static/
${
model_item
}
/benchmark_common/run_benchmark.sh
${
model_item
}
${
bs_item
}
${
fp_item
}
${
run_process_type
}
${
run_mode
}
${
device_num
}
${
max_iter
}
${
num_workers
}
2>&1
;
test_tipc/static/yolov3_darknet53_270e_coco/N1C8/yolov3_darknet53_270e_coco_bs8_fp32_MultiP_DP.sh
0 → 100644
浏览文件 @
7b60e7d8
model_item
=
yolov3_darknet53_270e_coco
bs_item
=
8
fp_item
=
fp32
run_process_type
=
MultiP
run_mode
=
DP
device_num
=
N1C8
max_iter
=
500
num_workers
=
8
# get data
bash test_tipc/static/
${
model_item
}
/benchmark_common/prepare.sh
# run
bash test_tipc/static/
${
model_item
}
/benchmark_common/run_benchmark.sh
${
model_item
}
${
bs_item
}
${
fp_item
}
${
run_process_type
}
${
run_mode
}
${
device_num
}
${
max_iter
}
${
num_workers
}
2>&1
;
test_tipc/static/yolov3_darknet53_270e_coco/benchmark_common/prepare.sh
0 → 100644
浏览文件 @
7b60e7d8
#!/usr/bin/env bash
# 执行路径在模型库的根目录下
################################# 安装框架 如:
echo
"*******prepare benchmark start ***********"
pip
install
-U
pip
-i
https://pypi.tuna.tsinghua.edu.cn/simple
echo
`
pip
--version
`
pip
install
Cython
-i
https://pypi.tuna.tsinghua.edu.cn/simple
python
-m
pip
install
paddlepaddle-gpu
==
2.2.2.post112
-f
https://www.paddlepaddle.org.cn/whl/linux/mkl/avx/stable.html
pip
install
-r
requirements.txt
-i
https://pypi.tuna.tsinghua.edu.cn/simple
################################# 准备训练数据 如:
wget
-nc
-P
static/data/coco/ https://paddledet.bj.bcebos.com/data/coco_benchmark.tar
cd
./static/data/coco/
&&
tar
-xf
coco_benchmark.tar
&&
mv
-u
coco_benchmark/
*
.
rm
-rf
coco_benchmark/
&&
cd
../../../
echo
"*******prepare benchmark end***********"
test_tipc/static/yolov3_darknet53_270e_coco/benchmark_common/run_benchmark.sh
0 → 100644
浏览文件 @
7b60e7d8
#!/usr/bin/env bash
# Test training benchmark for a model.
# Usage:bash run_benchmark.sh ${model_item} ${bs_item} ${fp_item} ${run_process_type} ${run_mode} ${device_num}
function
_set_params
(){
model_item
=
${
1
:-
"model_item"
}
# (必选) 模型 item
base_batch_size
=
${
2
:-
"2"
}
# (必选) 如果是静态图单进程,则表示每张卡上的BS,需在训练时*卡数
fp_item
=
${
3
:-
"fp32"
}
# (必选) fp32|fp16
run_process_type
=
${
4
:-
"SingleP"
}
# (必选) 单进程 SingleP|多进程 MultiP
run_mode
=
${
5
:-
"DP"
}
# (必选) MP模型并行|DP数据并行|PP流水线并行|混合并行DP1-MP1-PP1|DP1-MP4-PP1
device_num
=
${
6
:-
"N1C1"
}
# (必选) 使用的卡数量,N1C1|N1C8|N4C32 (4机32卡)
profiling
=
${
PROFILING
:-
"false"
}
# (必选) Profiling 开关,默认关闭,通过全局变量传递
model_repo
=
"PaddleDetection"
# (必选) 模型套件的名字
speed_unit
=
"samples/sec"
# (必选)速度指标单位
skip_steps
=
10
# (必选)解析日志,跳过模型前几个性能不稳定的step
keyword
=
"ips:"
# (必选)解析日志,筛选出性能数据所在行的关键字
convergence_key
=
"loss:"
# (可选)解析日志,筛选出收敛数据所在行的关键字 如:convergence_key="loss:"
max_iter
=
${
7
:-
"500"
}
# (可选)需保证模型执行时间在5分钟内,需要修改代码提前中断的直接提PR 合入套件;或使用max_epoch参数
num_workers
=
${
8
:-
"8"
}
# (可选)
# 以下为通用执行命令,无特殊可不用修改
model_name
=
${
model_item
}
_bs
${
base_batch_size
}
_
${
fp_item
}
_
${
run_process_type
}
_
${
run_mode
}
# (必填) 且格式不要改动,与竞品名称对齐
device
=
${
CUDA_VISIBLE_DEVICES
//,/
}
arr
=(
${
device
}
)
num_gpu_devices
=
${#
arr
[*]
}
run_log_path
=
${
TRAIN_LOG_DIR
:-
$(
pwd
)
}
# (必填) TRAIN_LOG_DIR benchmark框架设置该参数为全局变量
profiling_log_path
=
${
PROFILING_LOG_DIR
:-
$(
pwd
)
}
# (必填) PROFILING_LOG_DIR benchmark框架设置该参数为全局变量
speed_log_path
=
${
LOG_PATH_INDEX_DIR
:-
$(
pwd
)
}
train_log_file
=
${
run_log_path
}
/
${
model_repo
}
_
${
model_name
}
_
${
device_num
}
_log
profiling_log_file
=
${
profiling_log_path
}
/
${
model_repo
}
_
${
model_name
}
_
${
device_num
}
_profiling
speed_log_file
=
${
speed_log_path
}
/
${
model_repo
}
_
${
model_name
}
_
${
device_num
}
_speed
}
function
_train
(){
cd
./static
batch_size
=
${
base_batch_size
}
# 如果模型跑多卡单进程时,请在_train函数中计算出多卡需要的bs
echo
"current CUDA_VISIBLE_DEVICES=
${
CUDA_VISIBLE_DEVICES
}
, model_name=
${
model_name
}
, device_num=
${
device_num
}
, is profiling=
${
profiling
}
"
if
[
${
profiling
}
=
"true"
]
;
then
log_file
=
${
profiling_log_file
}
is_profiler
=
1
else
log_file
=
${
train_log_file
}
is_profiler
=
0
fi
if
[
${
fp_item
}
=
"fp16"
]
;
then
use_fp16_cmd
=
"--fp16"
else
use_fp16_cmd
=
""
fi
train_cmd
=
"-c configs/yolov3_darknet.yml -o LearningRate.base_lr=0.002 snapshot_iter=100000
\
TrainReader.batch_size==
${
batch_size
}
\
max_iters=
${
max_iter
}
log_iter=1
\
TrainReader.worker_num==
${
num_workers
}
${
use_fp16_cmd
}
\
--is_profiler=
${
is_profiler
}
"
# 以下为通用执行命令,无特殊可不用修改
case
${
run_mode
}
in
DP
)
if
[[
${
run_process_type
}
=
"SingleP"
]]
;
then
echo
"run
${
run_mode
}
${
run_process_type
}
"
train_cmd
=
"python -u tools/train.py
${
train_cmd
}
"
elif
[[
${
run_process_type
}
=
"MultiP"
]]
;
then
rm
-rf
./mylog
train_cmd
=
"python -m paddle.distributed.launch --log_dir=./mylog --gpus=
$CUDA_VISIBLE_DEVICES
\
tools/train.py
${
train_cmd
}
"
else
echo
"run
${
run_mode
}
${
run_process_type
}
error"
,
exit
1
fi
;;
DP1-MP1-PP1
)
echo
"run run_mode: DP1-MP1-PP1"
;;
*
)
echo
"choose run_mode "
;
exit
1
;
esac
echo
"train_cmd:
${
train_cmd
}
log_file:
${
log_file
}
"
timeout
15m
${
train_cmd
}
>
${
log_file
}
2>&1
if
[
$?
-ne
0
]
;
then
echo
-e
"
${
model_name
}
, FAIL"
else
echo
-e
"
${
model_name
}
, SUCCESS"
fi
kill
-9
`
ps
-ef
|grep
'python'
|awk
'{print $2}'
`
if
[
${
run_process_type
}
=
"MultiP"
-a
-d
mylog
]
;
then
rm
${
log_file
}
cp
mylog/workerlog.0
${
log_file
}
fi
cd
../
}
source
${
BENCHMARK_ROOT
}
/scripts/run_model.sh
# 在该脚本中会对符合benchmark规范的log使用analysis.py 脚本进行性能数据解析;如果不联调只想要产出训练log可以注掉本行,提交时需打开
_set_params
$@
_train
# 如果只产出训练log,不解析,可取消注释
_run
# 该函数在run_model.sh中,执行时会调用_train; 如果不联调只产出训练log可以注掉本行,提交时需打开
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录