Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleDetection
提交
778b981e
P
PaddleDetection
项目概览
PaddlePaddle
/
PaddleDetection
大约 1 年 前同步成功
通知
694
Star
11112
Fork
2696
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
184
列表
看板
标记
里程碑
合并请求
40
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
184
Issue
184
列表
看板
标记
里程碑
合并请求
40
合并请求
40
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
体验新版 GitCode,发现更多精彩内容 >>
未验证
提交
778b981e
编写于
11月 22, 2017
作者:
G
Guo Sheng
提交者:
GitHub
11月 22, 2017
浏览文件
操作
浏览文件
下载
差异文件
Merge pull request #5804 from guoshengCS/fix-GRUUnitOp-dev
Fix calculations in gru_unit_op to consistent with gru_op
上级
23741aa9
b6b7ab63
变更
3
隐藏空白更改
内联
并排
Showing
3 changed file
with
60 addition
and
60 deletion
+60
-60
paddle/operators/gru_unit_op.cc
paddle/operators/gru_unit_op.cc
+9
-14
paddle/operators/gru_unit_op.h
paddle/operators/gru_unit_op.h
+41
-35
python/paddle/v2/fluid/tests/test_gru_unit_op.py
python/paddle/v2/fluid/tests/test_gru_unit_op.py
+10
-11
未找到文件。
paddle/operators/gru_unit_op.cc
浏览文件 @
778b981e
...
...
@@ -114,18 +114,19 @@ class GRUUnitOpMaker : public framework::OpProtoAndCheckerMaker {
.
SetDefault
(
sigmoid
)
.
InEnum
({
identity
,
sigmoid
,
tanh
,
relu
});
AddComment
(
R"DOC(
GRUUnit Operator.
This operator implements partial calculations of the GRU unit as follows:
GRUUnit Operator implements partial calculations of the GRU unit as following:
$$
update \ gate: u_t = actGate(xu_t + W_u * h
idden_{prev} + bias
_u) \\
reset \ gate: r_t = actGate(xr_t + W_r * h
idden_{prev} + bias
_r) \\
output \ candidate: {h}_t = actNode(
{xc}_t + W_c * dot(r_t, hidden_{prev}) + bias
_c) \\
output: h_t = dot((1
-u_t), {h}_t) + dot(u_t, hidden_{prev}
)
update \ gate: u_t = actGate(xu_t + W_u * h
_{t-1} + b
_u) \\
reset \ gate: r_t = actGate(xr_t + W_r * h
_{t-1} + b
_r) \\
output \ candidate: {h}_t = actNode(
xc_t + W_c * dot(r_t, h_{t-1}) + b
_c) \\
output: h_t = dot((1
- u_t), h_{t-1}) + dot(u_t, {h}_t
)
$$
The rest of GRU unit can be completed by using FCOp's output as the input of GRUUnitOp.
which is same as one time step of GRU Operator.
@note To implement the complete GRU unit, fully-connected operator must be
used before to feed xu, xr and xc as the Input of GRUUnit operator.
)DOC"
);
}
...
...
@@ -150,12 +151,6 @@ class GRUUnitGradOp : public framework::OperatorWithKernel {
"ResetHiddenPrev"
);
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"Hidden"
),
"Input(%s) of GRUUnitGradOp should not be null."
,
"Hidden"
);
PADDLE_ENFORCE
(
ctx
->
HasInput
(
framework
::
GradVarName
(
"Gate"
)),
"Input(%s@GRAD) of GRUUnitGradOp should not be null."
,
"Gate"
);
PADDLE_ENFORCE
(
ctx
->
HasInput
(
framework
::
GradVarName
(
"ResetHiddenPrev"
)),
"Input(%s@GRAD) of GRUUnitGradOp should not be null."
,
"ResetHiddenPrev"
);
PADDLE_ENFORCE
(
ctx
->
HasInput
(
framework
::
GradVarName
(
"Hidden"
)),
"Input(%s@GRAD) of GRUUnitGradOp should not be null."
,
"Hidden"
);
...
...
paddle/operators/gru_unit_op.h
浏览文件 @
778b981e
...
...
@@ -110,7 +110,7 @@ class GRUUnitKernel : public framework::OpKernel<T> {
auto
c
=
g
.
slice
(
c_offsets
,
extents
);
// output candidate
// calculate final output
h
.
device
(
place
)
=
u
*
(
h_p
-
c
)
+
c
;
h
.
device
(
place
)
=
u
*
(
c
-
h_p
)
+
h_p
;
}
};
...
...
@@ -146,35 +146,27 @@ class GRUUnitGradKernel : public framework::OpKernel<T> {
auto
*
weight_grad
=
context
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"Weight"
));
auto
*
bias_grad
=
context
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"Bias"
));
input_grad
->
mutable_data
<
T
>
(
context
.
GetPlace
());
hidden_prev_grad
->
mutable_data
<
T
>
(
context
.
GetPlace
());
weight_grad
->
mutable_data
<
T
>
(
context
.
GetPlace
());
Tensor
gate_grad
;
gate_grad
.
mutable_data
<
T
>
(
input
->
dims
(),
context
.
GetPlace
());
Tensor
reset_hidden_prev_grad
;
reset_hidden_prev_grad
.
mutable_data
<
T
>
(
reset_hidden_prev
->
dims
(),
context
.
GetPlace
());
int
batch_size
=
input
->
dims
()[
0
];
int
frame_size
=
hidden_prev
->
dims
()[
1
];
const
T
*
hidden_prev_data
=
hidden_prev
->
data
<
T
>
();
T
*
hidden_prev_grad_data
=
hidden_prev_grad
->
data
<
T
>
();
const
T
*
weight_data
=
weight
->
data
<
T
>
();
T
*
weight_grad_data
=
weight_grad
->
data
<
T
>
();
T
*
gate_grad_data
=
gate_grad
.
data
<
T
>
(
);
T
*
gate_grad_data
=
gate_grad
.
mutable_data
<
T
>
(
input
->
dims
(),
context
.
GetPlace
()
);
const
T
*
reset_hidden_prev_data
=
reset_hidden_prev
->
data
<
T
>
();
T
*
reset_hidden_prev_grad_data
=
reset_hidden_prev_grad
.
data
<
T
>
();
T
*
reset_hidden_prev_grad_data
=
reset_hidden_prev_grad
.
mutable_data
<
T
>
(
reset_hidden_prev
->
dims
(),
context
.
GetPlace
());
auto
h_p
=
EigenMatrix
<
T
>::
From
(
*
hidden_prev
);
auto
g
=
EigenMatrix
<
T
>::
From
(
*
gate
);
auto
d_h
=
EigenMatrix
<
T
>::
From
(
*
hidden_grad
);
auto
d_x
=
EigenMatrix
<
T
>::
From
(
*
input_grad
);
auto
d_h_p
=
EigenMatrix
<
T
>::
From
(
*
hidden_prev_grad
);
auto
d_g
=
EigenMatrix
<
T
>::
From
(
gate_grad
);
auto
d_r_h_p
=
EigenMatrix
<
T
>::
From
(
reset_hidden_prev_grad
);
auto
place
=
context
.
GetEigenDevice
<
Place
>
();
int
batch_size
=
input
->
dims
()[
0
];
int
frame_size
=
hidden_prev
->
dims
()[
1
];
Eigen
::
array
<
int
,
2
>
extents
({{
batch_size
,
frame_size
}});
Eigen
::
array
<
int
,
2
>
u_offsets
({{
0
,
0
}});
auto
u
=
g
.
slice
(
u_offsets
,
extents
);
// update gate
...
...
@@ -185,38 +177,52 @@ class GRUUnitGradKernel : public framework::OpKernel<T> {
// backward for unactivated update gate
ActGradCompute
(
context
.
Attr
<
int
>
(
"gate_activation"
),
place
,
u
,
u
,
d_g
.
slice
(
u_offsets
,
extents
),
d_h
*
(
h_p
-
c
));
d_g
.
slice
(
u_offsets
,
extents
),
d_h
*
(
c
-
h_p
));
// backward for unactivated output candidate
ActGradCompute
(
context
.
Attr
<
int
>
(
"activation"
),
place
,
c
,
c
,
d_g
.
slice
(
c_offsets
,
extents
),
d_h
*
(
u
.
constant
(
T
(
1
))
-
u
)
);
d_g
.
slice
(
c_offsets
,
extents
),
d_h
*
u
);
// backward for reset_hidden_prev
math
::
gemm
<
Place
,
T
>
(
context
.
device_context
(),
false
,
true
,
batch_size
,
frame_size
,
frame_size
,
1
,
gate_grad_data
+
frame_size
*
2
,
frame_size
*
3
,
weight_data
+
frame_size
*
frame_size
*
2
,
frame_size
,
0
,
reset_hidden_prev_grad_data
,
frame_size
);
// backward for state_weight
math
::
gemm
<
Place
,
T
>
(
context
.
device_context
(),
true
,
false
,
frame_size
,
frame_size
,
batch_size
,
1
,
reset_hidden_prev_data
,
frame_size
,
gate_grad_data
+
frame_size
*
2
,
frame_size
*
3
,
0
,
weight_grad_data
+
frame_size
*
frame_size
*
2
,
frame_size
);
// backward for unactivated reset gate
ActGradCompute
(
context
.
Attr
<
int
>
(
"gate_activation"
),
place
,
r
,
r
,
d_g
.
slice
(
r_offsets
,
extents
),
d_r_h_p
*
h_p
);
// backward for update_gate_weight and reset_gate_weight
math
::
gemm
<
Place
,
T
>
(
context
.
device_context
(),
true
,
false
,
frame_size
,
frame_size
*
2
,
batch_size
,
1
,
hidden_prev_data
,
frame_size
,
gate_grad_data
,
frame_size
*
3
,
0
,
weight_grad_data
,
frame_size
*
2
);
// backward for weight
if
(
weight_grad
)
{
T
*
weight_grad_data
=
weight_grad
->
mutable_data
<
T
>
(
context
.
GetPlace
());
// backward for state_weight
math
::
gemm
<
Place
,
T
>
(
context
.
device_context
(),
true
,
false
,
frame_size
,
frame_size
,
batch_size
,
1
,
reset_hidden_prev_data
,
frame_size
,
gate_grad_data
+
frame_size
*
2
,
frame_size
*
3
,
0
,
weight_grad_data
+
frame_size
*
frame_size
*
2
,
frame_size
);
// backward for update_gate_weight and reset_gate_weight
math
::
gemm
<
Place
,
T
>
(
context
.
device_context
(),
true
,
false
,
frame_size
,
frame_size
*
2
,
batch_size
,
1
,
hidden_prev_data
,
frame_size
,
gate_grad_data
,
frame_size
*
3
,
0
,
weight_grad_data
,
frame_size
*
2
);
}
// backward for hidden_prev
d_h_p
.
device
(
place
)
=
d_r_h_p
*
r
+
d_h
*
u
;
math
::
gemm
<
Place
,
T
>
(
context
.
device_context
(),
false
,
true
,
batch_size
,
frame_size
,
frame_size
*
2
,
1
,
gate_grad_data
,
frame_size
*
3
,
weight_data
,
frame_size
*
2
,
1
,
hidden_prev_grad_data
,
frame_size
);
if
(
hidden_prev_grad
)
{
T
*
hidden_prev_grad_data
=
hidden_prev_grad
->
mutable_data
<
T
>
(
context
.
GetPlace
());
auto
d_h_p
=
EigenMatrix
<
T
>::
From
(
*
hidden_prev_grad
);
d_h_p
.
device
(
place
)
=
d_r_h_p
*
r
+
d_h
*
(
u
.
constant
(
T
(
1
))
-
u
);
math
::
gemm
<
Place
,
T
>
(
context
.
device_context
(),
false
,
true
,
batch_size
,
frame_size
,
frame_size
*
2
,
1
,
gate_grad_data
,
frame_size
*
3
,
weight_data
,
frame_size
*
2
,
1
,
hidden_prev_grad_data
,
frame_size
);
}
// backward for input
d_x
.
device
(
place
)
=
d_g
;
if
(
input_grad
)
{
input_grad
->
mutable_data
<
T
>
(
context
.
GetPlace
());
auto
d_x
=
EigenMatrix
<
T
>::
From
(
*
input_grad
);
d_x
.
device
(
place
)
=
d_g
;
}
// backward for bias
if
(
bias_grad
)
{
bias_grad
->
mutable_data
<
T
>
(
context
.
GetPlace
());
...
...
python/paddle/v2/fluid/tests/test_gru_unit_op.py
浏览文件 @
778b981e
...
...
@@ -28,8 +28,8 @@ def relu(x):
class
TestGRUUnitOp
(
OpTest
):
batch_size
=
3
frame_size
=
5
batch_size
=
5
frame_size
=
10
activate
=
{
GRUActivationType
.
identity
:
identity
,
GRUActivationType
.
sigmoid
:
sigmoid
,
...
...
@@ -77,7 +77,7 @@ class TestGRUUnitOp(OpTest):
c
=
self
.
activate
[
self
.
attrs
[
'activation'
]](
np
.
dot
(
r_h_p
,
w_c
)
+
g
[:,
frame_size
*
2
:])
g
=
np
.
hstack
((
u_r
,
c
))
h
=
u
*
h_p
+
(
1
-
u
)
*
c
h
=
u
*
c
+
(
1
-
u
)
*
h_p
self
.
outputs
=
{
'Gate'
:
g
.
astype
(
'float64'
),
'ResetHiddenPrev'
:
r_h_p
.
astype
(
'float64'
),
...
...
@@ -92,10 +92,7 @@ class TestGRUUnitOp(OpTest):
self
.
check_output
()
def
test_check_grad
(
self
):
self
.
check_grad
(
[
'Input'
,
'HiddenPrev'
,
'Weight'
],
[
'Hidden'
,
'ResetHiddenPrev'
,
'Gate'
],
max_relative_error
=
0.007
)
self
.
check_grad
([
'Input'
,
'HiddenPrev'
,
'Weight'
],
[
'Hidden'
])
class
TestGRUUnitOpWithBias
(
TestGRUUnitOp
):
...
...
@@ -104,18 +101,20 @@ class TestGRUUnitOpWithBias(TestGRUUnitOp):
frame_size
=
self
.
frame_size
super
(
TestGRUUnitOpWithBias
,
self
).
set_inputs
()
self
.
inputs
[
'Bias'
]
=
np
.
random
.
uniform
(
-
0.1
,
0.1
,
(
1
,
frame_size
*
3
)).
astype
(
'float
32
'
)
-
0.1
,
0.1
,
(
1
,
frame_size
*
3
)).
astype
(
'float
64
'
)
self
.
attrs
=
{
'activation'
:
GRUActivationType
.
identity
,
'gate_activation'
:
GRUActivationType
.
sigmoid
}
def
test_check_grad
(
self
):
self
.
check_grad
([
'Input'
,
'HiddenPrev'
,
'Weight'
,
'Bias'
],
[
'Hidden'
])
def
test_check_grad_ingore_input
(
self
):
self
.
check_grad
(
[
'
Input'
,
'
HiddenPrev'
,
'Weight'
,
'Bias'
],
[
'Hidden'
],
max_relative_error
=
0.007
)
[
'HiddenPrev'
,
'Weight'
,
'Bias'
],
[
'Hidden'
],
no_grad_set
=
set
(
'Input'
)
)
if
__name__
==
'__main__'
:
exit
(
0
)
# FIXME(yuyang18): This unittest is not pass. Fix it later
unittest
.
main
()
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录