Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleDetection
提交
76beff86
P
PaddleDetection
项目概览
PaddlePaddle
/
PaddleDetection
大约 1 年 前同步成功
通知
695
Star
11112
Fork
2696
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
184
列表
看板
标记
里程碑
合并请求
40
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
184
Issue
184
列表
看板
标记
里程碑
合并请求
40
合并请求
40
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
76beff86
编写于
1月 24, 2018
作者:
Y
Yibing Liu
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Make the projection activation configurable
上级
db1f6a59
变更
3
隐藏空白更改
内联
并排
Showing
3 changed file
with
66 addition
and
65 deletion
+66
-65
paddle/operators/lstmp_op.cc
paddle/operators/lstmp_op.cc
+38
-38
paddle/operators/lstmp_op.h
paddle/operators/lstmp_op.h
+8
-6
python/paddle/v2/fluid/tests/test_lstmp_op.py
python/paddle/v2/fluid/tests/test_lstmp_op.py
+20
-21
未找到文件。
paddle/operators/lstmp_op.cc
浏览文件 @
76beff86
...
...
@@ -23,27 +23,29 @@ class LSTMPOp : public framework::OperatorWithKernel {
void
InferShape
(
framework
::
InferShapeContext
*
ctx
)
const
override
{
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"Input"
),
"Input(Input) of LSTMP should not be null."
);
"Input(Input) of LSTMP
operator
should not be null."
);
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"Weight"
),
"Input(Weight) of LSTMP should not be null."
);
"Input(Weight) of LSTMP
operator
should not be null."
);
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"ProjWeight"
),
"Input(ProjWeight) of LSTMP should not be null."
);
"Input(ProjWeight) of LSTMP
operator
should not be null."
);
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"Bias"
),
"Input(Bias) of LSTMP should not be null."
);
"Input(Bias) of LSTMP
operator
should not be null."
);
PADDLE_ENFORCE
(
ctx
->
HasOutput
(
"Projection"
),
"Output(Projection) of LSTMP should not be null."
);
"Output(Projection) of LSTMP
operator
should not be null."
);
PADDLE_ENFORCE
(
ctx
->
HasOutput
(
"Cell"
),
"Output(Cell) of LSTMP should not be null."
);
"Output(Cell) of LSTMP
operator
should not be null."
);
PADDLE_ENFORCE
(
ctx
->
HasOutput
(
"BatchGate"
),
"Output(BatchGate) of LSTMP should not be null."
);
"Output(BatchGate) of LSTMP
operator
should not be null."
);
PADDLE_ENFORCE
(
ctx
->
HasOutput
(
"BatchCellPreAct"
),
"Output(BatchGate) of LSTMP should not be null."
);
"Output(BatchCellPreAct) of LSTMP operator should not be "
"null."
);
PADDLE_ENFORCE
(
ctx
->
HasOutput
(
"BatchHidden"
),
"Output(BatchHidden) of LSTMP should not be null."
);
"Output(BatchHidden) of LSTMP
operator
should not be null."
);
auto
in_dims
=
ctx
->
GetInputDim
(
"Input"
);
PADDLE_ENFORCE_EQ
(
in_dims
.
size
(),
2
,
"Input(X)'s rank must be 2."
);
PADDLE_ENFORCE_EQ
(
in_dims
.
size
(),
2
,
"Input(X)'s rank of LSTMP operator must be 2."
);
int
frame_size
=
in_dims
[
1
]
/
4
;
auto
w_dims
=
ctx
->
GetInputDim
(
"Weight"
);
...
...
@@ -68,8 +70,8 @@ class LSTMPOp : public framework::OperatorWithKernel {
if
(
ctx
->
HasInput
(
"H0"
))
{
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"C0"
),
"Input(C0)
and Input(H0) of LSTMP should not
"
"
be null at the same time
."
);
"Input(C0)
of LSTMP operator should not be null after
"
"
Input(H0) provided
."
);
auto
h_dims
=
ctx
->
GetInputDim
(
"H0"
);
auto
c_dims
=
ctx
->
GetInputDim
(
"C0"
);
PADDLE_ENFORCE
(
h_dims
==
c_dims
,
...
...
@@ -132,8 +134,7 @@ class LSTMPOpMaker : public framework::OpProtoAndCheckerMaker {
AddInput
(
"C0"
,
"(Tensor, optional) the initial cell state is an optional "
"input. This is a tensor with shape (N x D), where N is the "
"batch size. Only one of `H0` and `C0` can be NULL at the same "
"time."
)
"batch size. `C0` should not be null if `H0` provided."
)
.
AsDispensable
();
AddInput
(
"Weight"
,
"(Tensor) the learnable hidden-hidden weights."
...
...
@@ -211,13 +212,12 @@ class LSTMPOpMaker : public framework::OpProtoAndCheckerMaker {
"`tanh` by default."
)
.
SetDefault
(
"tanh"
)
.
InEnum
({
"sigmoid"
,
"tanh"
,
"relu"
,
"identity"
});
AddAttr
<
bool
>
(
"share_cell_act"
,
"(bool, defalut: True) "
"whether to share the activation of cell output with the "
"projection layer. When set to `False`, the projection "
"is simple linear, otherwise it will go through an "
"activation function same as `cell_activation`."
)
.
SetDefault
(
true
);
AddAttr
<
std
::
string
>
(
"proj_activation"
,
"(string, default: tanh)"
"The activation for projection output, "
"`tanh` by defalut."
)
.
SetDefault
(
"tanh"
)
.
InEnum
({
"sigmoid"
,
"tanh"
,
"relu"
,
"identity"
});
AddComment
(
R"DOC(
Long-Short Term Memory with recurrent Projection layer (LSTMP) Operator.
...
...
@@ -226,20 +226,21 @@ original hidden state to a lower-dimensional one, which is proposed to reduce
the number of total parameters and furthermore computational complexity for
the LSTM, espeacially for the case that the size of output units is relative
large (https://research.google.com/pubs/archive/43905.pdf).
The formula is as follows:
$$
i_t = \sigma(W_{ix}x_{t} + W_{i
h
}r_{t-1} + W_{ic}c_{t-1} + b_i) \\
i_t = \sigma(W_{ix}x_{t} + W_{i
r
}r_{t-1} + W_{ic}c_{t-1} + b_i) \\
f_t = \sigma(W_{fx}x_{t} + W_{f
h
}r_{t-1} + W_{fc}c_{t-1} + b_f) \\
f_t = \sigma(W_{fx}x_{t} + W_{f
r
}r_{t-1} + W_{fc}c_{t-1} + b_f) \\
\tilde{c_t} = act_g(W_{cx}x_t + W_{c
h
}r_{t-1} + b_c) \\
\tilde{c_t} = act_g(W_{cx}x_t + W_{c
r
}r_{t-1} + b_c) \\
o_t = \sigma(W_{ox}x_{t} + W_{o
h
}r_{t-1} + W_{oc}c_t + b_o) \\
o_t = \sigma(W_{ox}x_{t} + W_{o
r
}r_{t-1} + W_{oc}c_t + b_o) \\
c_t = f_t \odot c_{t-1} + i_t \odot \tilde{c_t}
c_t = f_t \odot c_{t-1} + i_t \odot \tilde{c_t}
\\
h_t = o_t \odot act_h(c_t)
h_t = o_t \odot act_h(c_t)
\\
r_t = \overline{act_h}(W_{rh}h_t)
$$
...
...
@@ -259,9 +260,8 @@ input and previous hidden state.
The $\odot$ is the element-wise product of the vectors. $act_g$ and $act_h$
are the cell input and cell output activation functions and `tanh` is usually
used for them. $\overline{act_h}$ is the activation function for the projection
layer. When `share_cell_act` set to `False`, $\overline{act_h}$ is an
identity activation, otherwise it will be same as $act_h$.
used for them. $\overline{act_h}$ is the activation function for the
projection output, usually using `identity` or same as $act_h$.
Note that these $W_{xi}x_{t}, W_{xf}x_{t}, W_{xc}x_{t}, W_{xo}x_{t}$
operations on the input $x_{t}$ are NOT included in this operator.
...
...
@@ -277,22 +277,22 @@ class LSTMPGradOp : public framework::OperatorWithKernel {
void
InferShape
(
framework
::
InferShapeContext
*
ctx
)
const
override
{
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"Input"
),
"Input(Input) of LSTMP should not be null."
);
"Input(Input) of LSTMP
operator
should not be null."
);
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"Projection"
),
"Input(Projection) of LSTMP should not be null."
);
"Input(Projection) of LSTMP
operator
should not be null."
);
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"Cell"
),
"Input(Cell) of LSTMP should not be null."
);
"Input(Cell) of LSTMP
operator
should not be null."
);
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"Weight"
),
"Input(Weight) of LSTMP should not be null."
);
"Input(Weight) of LSTMP
operator
should not be null."
);
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"ProjWeight"
),
"Input(ProjWeight) of LSTMP should not be null."
);
"Input(ProjWeight) of LSTMP
operator
should not be null."
);
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"Bias"
),
"Input(Bias) of LSTMP should not be null."
);
"Input(Bias) of LSTMP
operator
should not be null."
);
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"BatchGate"
),
"Input(BatchGate) of LSTMP should not be null."
);
"Input(BatchGate) of LSTMP
operator
should not be null."
);
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"BatchCellPreAct"
),
"Input(BatchGate) of LSTMP should not be null."
);
"Input(BatchGate) of LSTMP
operator
should not be null."
);
auto
SetOutGradDim
=
[
&
ctx
](
const
std
::
string
&
name
)
{
auto
g_name
=
framework
::
GradVarName
(
name
);
...
...
paddle/operators/lstmp_op.h
浏览文件 @
76beff86
...
...
@@ -136,7 +136,8 @@ class LSTMPKernel : public framework::OpKernel<T> {
ctx
.
Attr
<
std
::
string
>
(
"cell_activation"
));
auto
cand_act
=
math
::
detail
::
GetActivationType
(
ctx
.
Attr
<
std
::
string
>
(
"candidate_activation"
));
auto
share_cell_act
=
ctx
.
Attr
<
bool
>
(
"share_cell_act"
);
auto
proj_act
=
math
::
detail
::
GetActivationType
(
ctx
.
Attr
<
std
::
string
>
(
"proj_activation"
));
auto
&
place
=
*
ctx
.
template
device_context
<
DeviceContext
>().
eigen_device
();
for
(
size_t
n
=
0
;
n
<
num_batch
;
n
++
)
{
...
...
@@ -174,7 +175,7 @@ class LSTMPKernel : public framework::OpKernel<T> {
math
::
matmul
<
DeviceContext
,
T
>
(
device_ctx
,
ordered_h0
,
false
,
*
proj_weight
,
false
,
static_cast
<
T
>
(
1.0
),
ordered_proj0
,
static_cast
<
T
>
(
0.0
));
if
(
share_cell_act
)
{
if
(
proj_act
!=
math
::
detail
::
ActivationType
::
kIdentity
)
{
auto
proj0_dev
=
EigenMatrix
<
T
>::
From
(
*
ordered_proj0
);
ActCompute
(
cell_act
,
place
,
proj0_dev
,
proj0_dev
);
}
...
...
@@ -194,7 +195,7 @@ class LSTMPKernel : public framework::OpKernel<T> {
math
::
matmul
<
DeviceContext
,
T
>
(
device_ctx
,
hidden_t
,
false
,
*
proj_weight
,
false
,
static_cast
<
T
>
(
1.0
),
&
proj_t
,
static_cast
<
T
>
(
0.0
));
if
(
share_cell_act
)
{
if
(
proj_act
!=
math
::
detail
::
ActivationType
::
kIdentity
)
{
auto
proj_t_dev
=
EigenMatrix
<
T
>::
From
(
proj_t
);
ActCompute
(
cell_act
,
place
,
proj_t_dev
,
proj_t_dev
);
}
...
...
@@ -348,7 +349,8 @@ class LSTMPGradKernel : public framework::OpKernel<T> {
ctx
.
Attr
<
std
::
string
>
(
"cell_activation"
));
auto
cand_act
=
math
::
detail
::
GetActivationType
(
ctx
.
Attr
<
std
::
string
>
(
"candidate_activation"
));
auto
share_cell_act
=
ctx
.
Attr
<
bool
>
(
"share_cell_act"
);
auto
proj_act
=
math
::
detail
::
GetActivationType
(
ctx
.
Attr
<
std
::
string
>
(
"proj_activation"
));
auto
&
place
=
*
ctx
.
template
device_context
<
DeviceContext
>().
eigen_device
();
auto
batch_starts
=
batch_gate
->
lod
()[
0
];
...
...
@@ -359,7 +361,7 @@ class LSTMPGradKernel : public framework::OpKernel<T> {
Tensor
cur_proj
=
batch_proj
.
Slice
(
bstart
,
bend
);
Tensor
proj_g
=
batch_proj_g
.
Slice
(
bstart
,
bend
);
if
(
share_cell_act
)
{
if
(
proj_act
!=
math
::
detail
::
ActivationType
::
kIdentity
)
{
auto
cur_proj_dev
=
EigenMatrix
<
T
>::
From
(
cur_proj
);
auto
proj_g_dev
=
EigenMatrix
<
T
>::
From
(
proj_g
);
ActGradCompute
(
cell_act
,
place
,
cur_proj_dev
,
cur_proj_dev
,
proj_g_dev
,
...
...
@@ -439,7 +441,7 @@ class LSTMPGradKernel : public framework::OpKernel<T> {
math
::
matmul
<
DeviceContext
,
T
>
(
device_ctx
,
gate_g
,
false
,
*
weight
,
true
,
static_cast
<
T
>
(
1.0
),
&
proj0_g
,
static_cast
<
T
>
(
0.0
));
if
(
share_cell_act
)
{
if
(
proj_act
!=
math
::
detail
::
ActivationType
::
kIdentity
)
{
auto
proj0_dev
=
EigenMatrix
<
T
>::
From
(
*
ordered_proj0
);
auto
proj0_g_dev
=
EigenMatrix
<
T
>::
From
(
proj0_g
);
ActGradCompute
(
cell_act
,
place
,
proj0_dev
,
proj0_dev
,
proj0_g_dev
,
...
...
python/paddle/v2/fluid/tests/test_lstmp_op.py
浏览文件 @
76beff86
...
...
@@ -41,7 +41,7 @@ def relu(x):
return
np
.
maximum
(
x
,
0
)
ACTVATION
=
{
ACT
I
VATION
=
{
'identity'
:
identity
,
'sigmoid'
:
sigmoid
,
'tanh'
:
tanh
,
...
...
@@ -63,8 +63,9 @@ def lstmp(
act_gate
=
None
,
act_cell
=
None
,
act_cand
=
None
,
share_cell_act
=
True
):
def
_step
(
x
,
w_r
,
w_rh
,
w_c
,
r_pre
,
c_pre
,
act_gate
,
act_cell
,
act_cand
):
act_proj
=
None
):
def
_step
(
x
,
w_r
,
w_rh
,
w_c
,
r_pre
,
c_pre
,
act_gate
,
act_cell
,
act_cand
,
act_proj
):
g
=
np
.
dot
(
r_pre
,
w_r
)
# 1 x 4D
g
=
g
+
x
g
=
np
.
reshape
(
g
,
(
1
,
g
.
size
))
...
...
@@ -86,8 +87,7 @@ def lstmp(
h
=
g_o
*
act_cell
(
c
)
# projection
r
=
np
.
dot
(
h
,
w_rh
)
if
share_cell_act
:
r
=
act_cell
(
r
)
r
=
act_proj
(
r
)
return
r
,
c
def
_reverse
(
x
,
lod
):
...
...
@@ -110,13 +110,12 @@ def lstmp(
seq_len
=
offset
[
i
+
1
]
-
offset
[
i
]
x
=
input
[
offset
[
i
]:
offset
[
i
+
1
],
:]
r_pre
=
np
.
dot
(
h0
[
i
],
w_rh
)
# 1 x P
if
share_cell_act
:
r_pre
=
act_cell
(
r_pre
)
r_pre
=
act_proj
(
r_pre
)
c_pre
=
c0
[
i
]
# 1 x D
for
j
in
range
(
seq_len
):
# compute one step
r_pre
,
c_pre
=
_step
(
x
[
j
],
w_r
,
w_rh
,
w_c
,
r_pre
,
c_pre
,
act_gate
,
act_cell
,
act_cand
)
act_cell
,
act_cand
,
act_proj
)
projection
.
append
(
r_pre
.
flatten
())
cell
.
append
(
c_pre
.
flatten
())
...
...
@@ -131,7 +130,7 @@ def lstmp(
return
projection
,
cell
class
TestLstmOp
(
OpTest
):
class
TestLstm
p
Op
(
OpTest
):
def
set_argument
(
self
):
self
.
lod
=
[[
0
,
2
,
5
,
7
]]
# hidden size
...
...
@@ -142,8 +141,8 @@ class TestLstmOp(OpTest):
self
.
act_gate
=
'sigmoid'
self
.
act_cell
=
'tanh'
self
.
act_cand
=
'tanh'
self
.
act_proj
=
self
.
act_cell
self
.
share_cell_act
=
True
self
.
has_initial_state
=
False
self
.
is_reverse
=
False
self
.
use_peepholes
=
True
...
...
@@ -172,8 +171,8 @@ class TestLstmOp(OpTest):
w_c
=
b
[:,
4
*
self
.
D
:]
if
self
.
use_peepholes
else
None
w_rh
=
np
.
random
.
normal
(
size
=
(
self
.
D
,
self
.
P
)).
astype
(
'float64'
)
r
,
c
=
lstmp
(
x
,
self
.
lod
,
h0
,
c0
,
w
,
w_rh
,
w_b
,
w_c
,
self
.
is_reverse
,
ACT
VATION
[
self
.
act_gate
],
ACT
VATION
[
self
.
act_cell
],
ACT
VATION
[
self
.
act_cand
],
self
.
share_cell_act
)
ACT
IVATION
[
self
.
act_gate
],
ACTI
VATION
[
self
.
act_cell
],
ACT
IVATION
[
self
.
act_cand
],
ACTIVATION
[
self
.
act_proj
]
)
self
.
inputs
=
{
'Input'
:
(
x
,
self
.
lod
),
'Weight'
:
w
,
'ProjWeight'
:
w_rh
}
...
...
@@ -193,7 +192,7 @@ class TestLstmOp(OpTest):
'gate_activation'
:
self
.
act_gate
,
'cell_activation'
:
self
.
act_cell
,
'candidate_activation'
:
self
.
act_cand
,
'
share_cell_act'
:
self
.
share_cell_act
'
proj_activation'
:
self
.
act_proj
}
def
test_check_output
(
self
):
...
...
@@ -212,7 +211,7 @@ class TestLstmOp(OpTest):
max_relative_error
=
1e-2
)
class
TestLstm
OpHasInitial
(
TestLstm
Op
):
class
TestLstm
pOpHasInitial
(
TestLstmp
Op
):
def
set_argument
(
self
):
self
.
lod
=
[[
0
,
2
,
5
,
7
]]
self
.
D
=
16
...
...
@@ -221,8 +220,8 @@ class TestLstmOpHasInitial(TestLstmOp):
self
.
act_gate
=
'sigmoid'
self
.
act_cell
=
'tanh'
self
.
act_cand
=
'tanh'
self
.
act_proj
=
self
.
act_cell
self
.
share_cell_act
=
True
self
.
has_initial_state
=
True
self
.
is_reverse
=
True
self
.
use_peepholes
=
True
...
...
@@ -313,7 +312,7 @@ class TestLstmOpHasInitial(TestLstmOp):
no_grad_set
=
set
(
'C0'
))
class
TestLstm
OpRerverse
(
TestLstm
Op
):
class
TestLstm
pOpRerverse
(
TestLstmp
Op
):
def
set_argument
(
self
):
self
.
lod
=
[[
0
,
2
,
5
,
7
]]
self
.
D
=
16
...
...
@@ -322,14 +321,14 @@ class TestLstmOpRerverse(TestLstmOp):
self
.
act_gate
=
'sigmoid'
self
.
act_cell
=
'tanh'
self
.
act_cand
=
'tanh'
self
.
act_proj
=
self
.
act_cell
self
.
share_cell_act
=
True
self
.
has_initial_state
=
False
self
.
is_reverse
=
True
self
.
use_peepholes
=
True
class
TestLstm
OpNotUsePeepholes
(
TestLstm
Op
):
class
TestLstm
pOpNotUsePeepholes
(
TestLstmp
Op
):
def
set_argument
(
self
):
self
.
lod
=
[[
0
,
2
,
5
,
7
]]
self
.
D
=
16
...
...
@@ -338,14 +337,14 @@ class TestLstmOpNotUsePeepholes(TestLstmOp):
self
.
act_gate
=
'sigmoid'
self
.
act_cell
=
'tanh'
self
.
act_cand
=
'tanh'
self
.
act_proj
=
self
.
act_cell
self
.
share_cell_act
=
True
self
.
has_initial_state
=
False
self
.
is_reverse
=
False
self
.
use_peepholes
=
False
class
TestLstm
OpNotShareCellAct
(
TestLstm
Op
):
class
TestLstm
pOpLinearProjection
(
TestLstmp
Op
):
def
set_argument
(
self
):
self
.
lod
=
[[
0
,
2
,
5
,
7
]]
self
.
D
=
16
...
...
@@ -354,8 +353,8 @@ class TestLstmOpNotShareCellAct(TestLstmOp):
self
.
act_gate
=
'sigmoid'
self
.
act_cell
=
'tanh'
self
.
act_cand
=
'tanh'
self
.
act_proj
=
'identity'
self
.
share_cell_act
=
False
self
.
has_initial_state
=
False
self
.
is_reverse
=
False
self
.
use_peepholes
=
True
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录