Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleDetection
提交
759b2dfc
P
PaddleDetection
项目概览
PaddlePaddle
/
PaddleDetection
大约 1 年 前同步成功
通知
695
Star
11112
Fork
2696
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
184
列表
看板
标记
里程碑
合并请求
40
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
184
Issue
184
列表
看板
标记
里程碑
合并请求
40
合并请求
40
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
759b2dfc
编写于
1月 03, 2020
作者:
littletomatodonkey
提交者:
GitHub
1月 03, 2020
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Add DIOU nms (#160)
* add diou nms. * fix typo in diou nms and soft nms (lod_leval->lod_level).
上级
1e6090d8
变更
4
隐藏空白更改
内联
并排
Showing
4 changed file
with
166 addition
and
15 deletion
+166
-15
configs/iou_loss/README.md
configs/iou_loss/README.md
+1
-1
configs/iou_loss/faster_rcnn_r50_vd_fpn_ciou_loss_1x.yml
configs/iou_loss/faster_rcnn_r50_vd_fpn_ciou_loss_1x.yml
+6
-4
ppdet/modeling/losses/diou_loss.py
ppdet/modeling/losses/diou_loss.py
+8
-6
ppdet/modeling/ops.py
ppdet/modeling/ops.py
+151
-4
未找到文件。
configs/iou_loss/README.md
浏览文件 @
759b2dfc
...
...
@@ -45,4 +45,4 @@
| :---------------------- | :------------- | :---: | :---: | :-------: | :-----: | :------------: | :----: | :-----: | :----------------------------------------------------------: |
| ResNet50-vd-FPN | Faster | GIOU | 10 | 2 | 1x | 22.94 | 39.4 | - |
[
model
](
https://paddlemodels.bj.bcebos.com/object_detection/faster_rcnn_r50_vd_fpn_giou_loss_1x.tar
)
|
| ResNet50-vd-FPN | Faster | DIOU | 12 | 2 | 1x | 22.94 | 39.2 | - |
[
model
](
https://paddlemodels.bj.bcebos.com/object_detection/faster_rcnn_r50_vd_fpn_diou_loss_1x.tar
)
|
| ResNet50-vd-FPN | Faster | CIOU | 12 | 2 | 1x | 22.95 | 39.
5
| - |
[
model
](
https://paddlemodels.bj.bcebos.com/object_detection/faster_rcnn_r50_vd_fpn_ciou_loss_1x.tar
)
|
| ResNet50-vd-FPN | Faster | CIOU | 12 | 2 | 1x | 22.95 | 39.
6
| - |
[
model
](
https://paddlemodels.bj.bcebos.com/object_detection/faster_rcnn_r50_vd_fpn_ciou_loss_1x.tar
)
|
configs/iou_loss/faster_rcnn_r50_vd_fpn_ciou_loss_1x.yml
浏览文件 @
759b2dfc
...
...
@@ -75,12 +75,14 @@ BBoxAssigner:
BBoxHead
:
head
:
TwoFCHead
nms
:
keep_top_k
:
100
nms_threshold
:
0.5
score_threshold
:
0.05
nms
:
MultiClassDiouNMS
bbox_loss
:
DiouLoss
MultiClassDiouNMS
:
keep_top_k
:
100
nms_threshold
:
0.5
score_threshold
:
0.05
DiouLoss
:
loss_weight
:
10.0
is_cls_agnostic
:
false
...
...
ppdet/modeling/losses/diou_loss.py
浏览文件 @
759b2dfc
...
...
@@ -90,19 +90,21 @@ class DiouLoss(GiouLoss):
)
-
intsctk
+
eps
iouk
=
intsctk
/
unionk
# DIOU term
dist_intersection
=
(
cx
-
cxg
)
*
(
cx
-
cxg
)
+
(
cy
-
cyg
)
*
(
cy
-
cyg
)
dist_union
=
(
xc2
-
xc1
)
*
(
xc2
-
xc1
)
+
(
yc2
-
yc1
)
*
(
yc2
-
yc1
)
diou_term
=
(
dist_intersection
+
eps
)
/
(
dist_union
+
eps
)
# CIOU term
ciou_term
=
0
if
self
.
use_complete_iou_loss
:
dist_intersection
=
(
cx
-
cxg
)
*
(
cx
-
cxg
)
+
(
cy
-
cyg
)
*
(
cy
-
cyg
)
dist_union
=
(
xc2
-
xc1
)
*
(
xc2
-
xc1
)
+
(
yc2
-
yc1
)
*
(
yc2
-
yc1
)
d
=
(
dist_intersection
+
eps
)
/
(
dist_union
+
eps
)
ar_gt
=
wg
/
hg
ar_pred
=
w
/
h
arctan
=
fluid
.
layers
.
atan
(
ar_gt
)
-
fluid
.
layers
.
atan
(
ar_pred
)
ar_loss
=
4.
/
np
.
pi
/
np
.
pi
*
arctan
*
arctan
alpha
=
ar_loss
/
(
1
-
iouk
+
ar_loss
+
eps
)
alpha
.
stop_gradient
=
True
ciou_term
=
d
+
alpha
*
ar_loss
ciou_term
=
alpha
*
ar_loss
iou_weights
=
1
if
inside_weight
is
not
None
and
outside_weight
is
not
None
:
...
...
@@ -116,6 +118,6 @@ class DiouLoss(GiouLoss):
class_weight
=
2
if
self
.
is_cls_agnostic
else
self
.
num_classes
diou
=
fluid
.
layers
.
reduce_mean
(
(
1
-
iouk
+
ciou_term
)
*
iou_weights
)
*
class_weight
(
1
-
iouk
+
ciou_term
+
diou_term
)
*
iou_weights
)
*
class_weight
return
diou
*
self
.
loss_weight
ppdet/modeling/ops.py
浏览文件 @
759b2dfc
...
...
@@ -24,7 +24,7 @@ __all__ = [
'AnchorGenerator'
,
'RPNTargetAssign'
,
'GenerateProposals'
,
'MultiClassNMS'
,
'BBoxAssigner'
,
'MaskAssigner'
,
'RoIAlign'
,
'RoIPool'
,
'MultiBoxHead'
,
'SSDOutputDecoder'
,
'RetinaTargetAssign'
,
'RetinaOutputDecoder'
,
'ConvNorm'
,
'MultiClassSoftNMS'
'MultiClassSoftNMS'
,
'MultiClassDiouNMS'
]
...
...
@@ -226,9 +226,9 @@ class MultiClassSoftNMS(object):
self
.
background_label
=
background_label
def
__call__
(
self
,
bboxes
,
scores
):
def
create_tmp_var
(
program
,
name
,
dtype
,
shape
,
lod_lev
a
l
):
def
create_tmp_var
(
program
,
name
,
dtype
,
shape
,
lod_lev
e
l
):
return
program
.
current_block
().
create_var
(
name
=
name
,
dtype
=
dtype
,
shape
=
shape
,
lod_lev
al
=
lod_leva
l
)
name
=
name
,
dtype
=
dtype
,
shape
=
shape
,
lod_lev
el
=
lod_leve
l
)
def
_soft_nms_for_cls
(
dets
,
sigma
,
thres
):
"""soft_nms_for_cls"""
...
...
@@ -313,12 +313,159 @@ class MultiClassSoftNMS(object):
name
=
'softnms_pred_result'
,
dtype
=
'float32'
,
shape
=
[
6
],
lod_lev
a
l
=
1
)
lod_lev
e
l
=
1
)
fluid
.
layers
.
py_func
(
func
=
_soft_nms
,
x
=
[
bboxes
,
scores
],
out
=
pred_result
)
return
pred_result
@
register
@
serializable
class
MultiClassDiouNMS
(
object
):
def
__init__
(
self
,
score_threshold
=
0.05
,
keep_top_k
=
100
,
nms_threshold
=
0.5
,
normalized
=
False
,
background_label
=
0
,
):
super
(
MultiClassDiouNMS
,
self
).
__init__
()
self
.
score_threshold
=
score_threshold
self
.
nms_threshold
=
nms_threshold
self
.
keep_top_k
=
keep_top_k
self
.
normalized
=
normalized
self
.
background_label
=
background_label
def
__call__
(
self
,
bboxes
,
scores
):
def
create_tmp_var
(
program
,
name
,
dtype
,
shape
,
lod_level
):
return
program
.
current_block
().
create_var
(
name
=
name
,
dtype
=
dtype
,
shape
=
shape
,
lod_level
=
lod_level
)
def
_calc_diou_term
(
dets1
,
dets2
):
eps
=
1.e-10
eta
=
0
if
self
.
normalized
else
1
x1
,
y1
,
x2
,
y2
=
dets1
[
0
],
dets1
[
1
],
dets1
[
2
],
dets1
[
3
]
x1g
,
y1g
,
x2g
,
y2g
=
dets2
[
0
],
dets2
[
1
],
dets2
[
2
],
dets2
[
3
]
cx
=
(
x1
+
x2
)
/
2
cy
=
(
y1
+
y2
)
/
2
w
=
x2
-
x1
+
eta
h
=
y2
-
y1
+
eta
cxg
=
(
x1g
+
x2g
)
/
2
cyg
=
(
y1g
+
y2g
)
/
2
wg
=
x2g
-
x1g
+
eta
hg
=
y2g
-
y1g
+
eta
x2
=
np
.
maximum
(
x1
,
x2
)
y2
=
np
.
maximum
(
y1
,
y2
)
# A or B
xc1
=
np
.
minimum
(
x1
,
x1g
)
yc1
=
np
.
minimum
(
y1
,
y1g
)
xc2
=
np
.
maximum
(
x2
,
x2g
)
yc2
=
np
.
maximum
(
y2
,
y2g
)
# DIOU term
dist_intersection
=
(
cx
-
cxg
)
**
2
+
(
cy
-
cyg
)
**
2
dist_union
=
(
xc2
-
xc1
)
**
2
+
(
yc2
-
yc1
)
**
2
diou_term
=
(
dist_intersection
+
eps
)
/
(
dist_union
+
eps
)
return
diou_term
def
_diou_nms_for_cls
(
dets
,
thres
):
"""_diou_nms_for_cls"""
scores
=
dets
[:,
0
]
x1
=
dets
[:,
1
]
y1
=
dets
[:,
2
]
x2
=
dets
[:,
3
]
y2
=
dets
[:,
4
]
eta
=
0
if
self
.
normalized
else
1
areas
=
(
x2
-
x1
+
eta
)
*
(
y2
-
y1
+
eta
)
dt_num
=
dets
.
shape
[
0
]
order
=
np
.
array
(
range
(
dt_num
))
keep
=
[]
while
order
.
size
>
0
:
i
=
order
[
0
]
keep
.
append
(
i
)
xx1
=
np
.
maximum
(
x1
[
i
],
x1
[
order
[
1
:]])
yy1
=
np
.
maximum
(
y1
[
i
],
y1
[
order
[
1
:]])
xx2
=
np
.
minimum
(
x2
[
i
],
x2
[
order
[
1
:]])
yy2
=
np
.
minimum
(
y2
[
i
],
y2
[
order
[
1
:]])
w
=
np
.
maximum
(
0.0
,
xx2
-
xx1
+
eta
)
h
=
np
.
maximum
(
0.0
,
yy2
-
yy1
+
eta
)
inter
=
w
*
h
ovr
=
inter
/
(
areas
[
i
]
+
areas
[
order
[
1
:]]
-
inter
)
diou_term
=
_calc_diou_term
([
x1
[
i
],
y1
[
i
],
x2
[
i
],
y2
[
i
]],
[
x1
[
order
[
1
:]],
y1
[
order
[
1
:]],
x2
[
order
[
1
:]],
y2
[
order
[
1
:]]
])
inds
=
np
.
where
(
ovr
-
diou_term
<=
thres
)[
0
]
order
=
order
[
inds
+
1
]
dets_final
=
dets
[
keep
]
return
dets_final
def
_diou_nms
(
bboxes
,
scores
):
bboxes
=
np
.
array
(
bboxes
)
scores
=
np
.
array
(
scores
)
class_nums
=
scores
.
shape
[
-
1
]
score_threshold
=
self
.
score_threshold
nms_threshold
=
self
.
nms_threshold
keep_top_k
=
self
.
keep_top_k
cls_boxes
=
[[]
for
_
in
range
(
class_nums
)]
cls_ids
=
[[]
for
_
in
range
(
class_nums
)]
start_idx
=
1
if
self
.
background_label
==
0
else
0
for
j
in
range
(
start_idx
,
class_nums
):
inds
=
np
.
where
(
scores
[:,
j
]
>=
score_threshold
)[
0
]
scores_j
=
scores
[
inds
,
j
]
rois_j
=
bboxes
[
inds
,
j
,
:]
dets_j
=
np
.
hstack
((
scores_j
[:,
np
.
newaxis
],
rois_j
)).
astype
(
np
.
float32
,
copy
=
False
)
cls_rank
=
np
.
argsort
(
-
dets_j
[:,
0
])
dets_j
=
dets_j
[
cls_rank
]
cls_boxes
[
j
]
=
_diou_nms_for_cls
(
dets_j
,
thres
=
nms_threshold
)
cls_ids
[
j
]
=
np
.
array
([
j
]
*
cls_boxes
[
j
].
shape
[
0
]).
reshape
(
-
1
,
1
)
cls_boxes
=
np
.
vstack
(
cls_boxes
[
start_idx
:])
cls_ids
=
np
.
vstack
(
cls_ids
[
start_idx
:])
pred_result
=
np
.
hstack
([
cls_ids
,
cls_boxes
])
# Limit to max_per_image detections **over all classes**
image_scores
=
cls_boxes
[:,
0
]
if
len
(
image_scores
)
>
keep_top_k
:
image_thresh
=
np
.
sort
(
image_scores
)[
-
keep_top_k
]
keep
=
np
.
where
(
cls_boxes
[:,
0
]
>=
image_thresh
)[
0
]
pred_result
=
pred_result
[
keep
,
:]
res
=
fluid
.
LoDTensor
()
res
.
set_lod
([[
0
,
pred_result
.
shape
[
0
]]])
if
pred_result
.
shape
[
0
]
==
0
:
pred_result
=
np
.
array
([[
1
]],
dtype
=
np
.
float32
)
res
.
set
(
pred_result
,
fluid
.
CPUPlace
())
return
res
pred_result
=
create_tmp_var
(
fluid
.
default_main_program
(),
name
=
'diou_nms_pred_result'
,
dtype
=
'float32'
,
shape
=
[
6
],
lod_level
=
1
)
fluid
.
layers
.
py_func
(
func
=
_diou_nms
,
x
=
[
bboxes
,
scores
],
out
=
pred_result
)
return
pred_result
@
register
class
BBoxAssigner
(
object
):
__op__
=
fluid
.
layers
.
generate_proposal_labels
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录