Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleDetection
提交
7441fba7
P
PaddleDetection
项目概览
PaddlePaddle
/
PaddleDetection
1 年多 前同步成功
通知
696
Star
11112
Fork
2696
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
184
列表
看板
标记
里程碑
合并请求
40
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
184
Issue
184
列表
看板
标记
里程碑
合并请求
40
合并请求
40
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
7441fba7
编写于
11月 09, 2021
作者:
F
Feng Ni
提交者:
GitHub
11月 09, 2021
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
[MOT] fix picodet deepsort deploy, add cls_name visualization (#4513)
上级
9c0b62a7
变更
3
隐藏空白更改
内联
并排
Showing
3 changed file
with
186 addition
and
30 deletion
+186
-30
deploy/python/mot_jde_infer.py
deploy/python/mot_jde_infer.py
+8
-3
deploy/python/mot_sde_infer.py
deploy/python/mot_sde_infer.py
+164
-16
ppdet/modeling/mot/visualization.py
ppdet/modeling/mot/visualization.py
+14
-11
未找到文件。
deploy/python/mot_jde_infer.py
浏览文件 @
7441fba7
...
...
@@ -23,7 +23,6 @@ import paddle
from
paddle.inference
import
Config
from
paddle.inference
import
create_predictor
from
preprocess
import
preprocess
from
utils
import
argsparser
,
Timer
,
get_current_memory_mb
from
infer
import
Detector
,
get_test_images
,
print_arguments
,
PredictConfig
from
benchmark_utils
import
PaddleInferBenchmark
...
...
@@ -167,6 +166,8 @@ def predict_image(detector, image_list):
results
=
[]
num_classes
=
detector
.
num_classes
data_type
=
'mcmot'
if
num_classes
>
1
else
'mot'
ids2names
=
detector
.
pred_config
.
labels
image_list
.
sort
()
for
frame_id
,
img_file
in
enumerate
(
image_list
):
frame
=
cv2
.
imread
(
img_file
)
...
...
@@ -181,7 +182,8 @@ def predict_image(detector, image_list):
online_tlwhs
,
online_scores
,
online_ids
=
detector
.
predict
(
[
frame
],
FLAGS
.
threshold
)
online_im
=
plot_tracking_dict
(
frame
,
num_classes
,
online_tlwhs
,
online_ids
,
online_scores
,
frame_id
)
online_ids
,
online_scores
,
frame_id
,
ids2names
)
if
FLAGS
.
save_images
:
if
not
os
.
path
.
exists
(
FLAGS
.
output_dir
):
os
.
makedirs
(
FLAGS
.
output_dir
)
...
...
@@ -216,6 +218,8 @@ def predict_video(detector, camera_id):
results
=
defaultdict
(
list
)
# support single class and multi classes
num_classes
=
detector
.
num_classes
data_type
=
'mcmot'
if
num_classes
>
1
else
'mot'
ids2names
=
detector
.
pred_config
.
labels
while
(
1
):
ret
,
frame
=
capture
.
read
()
if
not
ret
:
...
...
@@ -237,7 +241,8 @@ def predict_video(detector, camera_id):
online_ids
,
online_scores
,
frame_id
=
frame_id
,
fps
=
fps
)
fps
=
fps
,
ids2names
=
ids2names
)
if
FLAGS
.
save_images
:
save_dir
=
os
.
path
.
join
(
FLAGS
.
output_dir
,
video_name
.
split
(
'.'
)[
-
2
])
if
not
os
.
path
.
exists
(
save_dir
):
...
...
deploy/python/mot_sde_infer.py
浏览文件 @
7441fba7
...
...
@@ -23,9 +23,9 @@ import paddle
from
paddle.inference
import
Config
from
paddle.inference
import
create_predictor
from
p
reprocess
import
prep
rocess
from
p
icodet_postprocess
import
PicoDetPostP
rocess
from
utils
import
argsparser
,
Timer
,
get_current_memory_mb
from
infer
import
Detector
,
get_test_images
,
print_arguments
,
PredictConfig
from
infer
import
Detector
,
DetectorPicoDet
,
get_test_images
,
print_arguments
,
PredictConfig
from
infer
import
load_predictor
from
benchmark_utils
import
PaddleInferBenchmark
...
...
@@ -139,6 +139,7 @@ class SDE_Detector(Detector):
cpu_threads
=
cpu_threads
,
enable_mkldnn
=
enable_mkldnn
)
assert
batch_size
==
1
,
"The JDE Detector only supports batch size=1 now"
self
.
pred_config
=
pred_config
def
postprocess
(
self
,
boxes
,
input_shape
,
im_shape
,
scale_factor
,
threshold
,
scaled
):
...
...
@@ -147,6 +148,8 @@ class SDE_Detector(Detector):
pred_dets
=
np
.
zeros
((
1
,
6
),
dtype
=
np
.
float32
)
pred_xyxys
=
np
.
zeros
((
1
,
4
),
dtype
=
np
.
float32
)
return
pred_dets
,
pred_xyxys
else
:
boxes
=
boxes
[
over_thres_idx
]
if
not
scaled
:
# scaled means whether the coords after detector outputs
...
...
@@ -159,6 +162,11 @@ class SDE_Detector(Detector):
pred_xyxys
,
keep_idx
=
clip_box
(
pred_bboxes
,
input_shape
,
im_shape
,
scale_factor
)
if
len
(
keep_idx
[
0
])
==
0
:
pred_dets
=
np
.
zeros
((
1
,
6
),
dtype
=
np
.
float32
)
pred_xyxys
=
np
.
zeros
((
1
,
4
),
dtype
=
np
.
float32
)
return
pred_dets
,
pred_xyxys
pred_scores
=
boxes
[:,
1
:
2
][
keep_idx
[
0
]]
pred_cls_ids
=
boxes
[:,
0
:
1
][
keep_idx
[
0
]]
pred_tlwhs
=
np
.
concatenate
(
...
...
@@ -168,7 +176,7 @@ class SDE_Detector(Detector):
pred_dets
=
np
.
concatenate
(
(
pred_tlwhs
,
pred_scores
,
pred_cls_ids
),
axis
=
1
)
return
pred_dets
[
over_thres_idx
],
pred_xyxys
[
over_thres_idx
]
return
pred_dets
,
pred_xyxys
def
predict
(
self
,
image
,
scaled
,
threshold
=
0.5
,
warmup
=
0
,
repeats
=
1
):
'''
...
...
@@ -220,6 +228,142 @@ class SDE_Detector(Detector):
return
pred_dets
,
pred_xyxys
class
SDE_DetectorPicoDet
(
DetectorPicoDet
):
"""
Args:
pred_config (object): config of model, defined by `Config(model_dir)`
model_dir (str): root path of model.pdiparams, model.pdmodel and infer_cfg.yml
device (str): Choose the device you want to run, it can be: CPU/GPU/XPU, default is CPU
run_mode (str): mode of running(fluid/trt_fp32/trt_fp16)
trt_min_shape (int): min shape for dynamic shape in trt
trt_max_shape (int): max shape for dynamic shape in trt
trt_opt_shape (int): opt shape for dynamic shape in trt
trt_calib_mode (bool): If the model is produced by TRT offline quantitative
calibration, trt_calib_mode need to set True
cpu_threads (int): cpu threads
enable_mkldnn (bool): whether to open MKLDNN
"""
def
__init__
(
self
,
pred_config
,
model_dir
,
device
=
'CPU'
,
run_mode
=
'fluid'
,
batch_size
=
1
,
trt_min_shape
=
1
,
trt_max_shape
=
1088
,
trt_opt_shape
=
608
,
trt_calib_mode
=
False
,
cpu_threads
=
1
,
enable_mkldnn
=
False
):
super
(
SDE_DetectorPicoDet
,
self
).
__init__
(
pred_config
=
pred_config
,
model_dir
=
model_dir
,
device
=
device
,
run_mode
=
run_mode
,
batch_size
=
batch_size
,
trt_min_shape
=
trt_min_shape
,
trt_max_shape
=
trt_max_shape
,
trt_opt_shape
=
trt_opt_shape
,
trt_calib_mode
=
trt_calib_mode
,
cpu_threads
=
cpu_threads
,
enable_mkldnn
=
enable_mkldnn
)
assert
batch_size
==
1
,
"The JDE Detector only supports batch size=1 now"
self
.
pred_config
=
pred_config
def
postprocess_bboxes
(
self
,
boxes
,
input_shape
,
im_shape
,
scale_factor
,
threshold
):
over_thres_idx
=
np
.
nonzero
(
boxes
[:,
1
:
2
]
>=
threshold
)[
0
]
if
len
(
over_thres_idx
)
==
0
:
pred_dets
=
np
.
zeros
((
1
,
6
),
dtype
=
np
.
float32
)
pred_xyxys
=
np
.
zeros
((
1
,
4
),
dtype
=
np
.
float32
)
return
pred_dets
,
pred_xyxys
else
:
boxes
=
boxes
[
over_thres_idx
]
pred_bboxes
=
boxes
[:,
2
:]
pred_xyxys
,
keep_idx
=
clip_box
(
pred_bboxes
,
input_shape
,
im_shape
,
scale_factor
)
if
len
(
keep_idx
[
0
])
==
0
:
pred_dets
=
np
.
zeros
((
1
,
6
),
dtype
=
np
.
float32
)
pred_xyxys
=
np
.
zeros
((
1
,
4
),
dtype
=
np
.
float32
)
return
pred_dets
,
pred_xyxys
pred_scores
=
boxes
[:,
1
:
2
][
keep_idx
[
0
]]
pred_cls_ids
=
boxes
[:,
0
:
1
][
keep_idx
[
0
]]
pred_tlwhs
=
np
.
concatenate
(
(
pred_xyxys
[:,
0
:
2
],
pred_xyxys
[:,
2
:
4
]
-
pred_xyxys
[:,
0
:
2
]
+
1
),
axis
=
1
)
pred_dets
=
np
.
concatenate
(
(
pred_tlwhs
,
pred_scores
,
pred_cls_ids
),
axis
=
1
)
return
pred_dets
,
pred_xyxys
def
predict
(
self
,
image
,
scaled
,
threshold
=
0.5
,
warmup
=
0
,
repeats
=
1
):
'''
Args:
image (np.ndarray): image numpy data
threshold (float): threshold of predicted box' score
scaled (bool): whether the coords after detector outputs are scaled,
default False in jde yolov3, set True in general detector.
Returns:
pred_dets (np.ndarray, [N, 6])
'''
self
.
det_times
.
preprocess_time_s
.
start
()
inputs
=
self
.
preprocess
(
image
)
self
.
det_times
.
preprocess_time_s
.
end
()
input_names
=
self
.
predictor
.
get_input_names
()
for
i
in
range
(
len
(
input_names
)):
input_tensor
=
self
.
predictor
.
get_input_handle
(
input_names
[
i
])
input_tensor
.
copy_from_cpu
(
inputs
[
input_names
[
i
]])
np_score_list
,
np_boxes_list
=
[],
[]
for
i
in
range
(
warmup
):
self
.
predictor
.
run
()
output_names
=
self
.
predictor
.
get_output_names
()
boxes_tensor
=
self
.
predictor
.
get_output_handle
(
output_names
[
0
])
boxes
=
boxes_tensor
.
copy_to_cpu
()
self
.
det_times
.
inference_time_s
.
start
()
for
i
in
range
(
repeats
):
self
.
predictor
.
run
()
np_score_list
.
clear
()
np_boxes_list
.
clear
()
output_names
=
self
.
predictor
.
get_output_names
()
num_outs
=
int
(
len
(
output_names
)
/
2
)
for
out_idx
in
range
(
num_outs
):
np_score_list
.
append
(
self
.
predictor
.
get_output_handle
(
output_names
[
out_idx
])
.
copy_to_cpu
())
np_boxes_list
.
append
(
self
.
predictor
.
get_output_handle
(
output_names
[
out_idx
+
num_outs
]).
copy_to_cpu
())
self
.
det_times
.
inference_time_s
.
end
(
repeats
=
repeats
)
self
.
det_times
.
img_num
+=
1
self
.
det_times
.
postprocess_time_s
.
start
()
self
.
postprocess
=
PicoDetPostProcess
(
inputs
[
'image'
].
shape
[
2
:],
inputs
[
'im_shape'
],
inputs
[
'scale_factor'
],
strides
=
self
.
pred_config
.
fpn_stride
,
nms_threshold
=
self
.
pred_config
.
nms
[
'nms_threshold'
])
boxes
,
boxes_num
=
self
.
postprocess
(
np_score_list
,
np_boxes_list
)
if
len
(
boxes
)
==
0
:
pred_dets
=
np
.
zeros
((
1
,
6
),
dtype
=
np
.
float32
)
pred_xyxys
=
np
.
zeros
((
1
,
4
),
dtype
=
np
.
float32
)
else
:
input_shape
=
inputs
[
'image'
].
shape
[
2
:]
im_shape
=
inputs
[
'im_shape'
]
scale_factor
=
inputs
[
'scale_factor'
]
pred_dets
,
pred_xyxys
=
self
.
postprocess_bboxes
(
boxes
,
input_shape
,
im_shape
,
scale_factor
,
threshold
)
return
pred_dets
,
pred_xyxys
class
SDE_ReID
(
object
):
def
__init__
(
self
,
pred_config
,
...
...
@@ -350,7 +494,7 @@ def predict_image(detector, reid_model, image_list):
pred_dets
,
pred_xyxys
=
detector
.
predict
([
frame
],
FLAGS
.
scaled
,
FLAGS
.
threshold
)
if
len
(
pred_dets
)
==
1
and
sum
(
pred_dets
)
==
0
:
if
len
(
pred_dets
)
==
1
and
np
.
sum
(
pred_dets
)
==
0
:
print
(
'Frame {} has no object, try to modify score threshold.'
.
format
(
i
))
online_im
=
frame
...
...
@@ -407,7 +551,7 @@ def predict_video(detector, reid_model, camera_id):
pred_dets
,
pred_xyxys
=
detector
.
predict
([
frame
],
FLAGS
.
scaled
,
FLAGS
.
threshold
)
if
len
(
pred_dets
)
==
1
and
sum
(
pred_dets
)
==
0
:
if
len
(
pred_dets
)
==
1
and
np
.
sum
(
pred_dets
)
==
0
:
print
(
'Frame {} has no object, try to modify score threshold.'
.
format
(
frame_id
))
timer
.
toc
()
...
...
@@ -464,17 +608,21 @@ def predict_video(detector, reid_model, camera_id):
def
main
():
pred_config
=
PredictConfig
(
FLAGS
.
model_dir
)
detector
=
SDE_Detector
(
pred_config
,
FLAGS
.
model_dir
,
device
=
FLAGS
.
device
,
run_mode
=
FLAGS
.
run_mode
,
trt_min_shape
=
FLAGS
.
trt_min_shape
,
trt_max_shape
=
FLAGS
.
trt_max_shape
,
trt_opt_shape
=
FLAGS
.
trt_opt_shape
,
trt_calib_mode
=
FLAGS
.
trt_calib_mode
,
cpu_threads
=
FLAGS
.
cpu_threads
,
enable_mkldnn
=
FLAGS
.
enable_mkldnn
)
detector_func
=
'SDE_Detector'
if
pred_config
.
arch
==
'PicoDet'
:
detector_func
=
'SDE_DetectorPicoDet'
detector
=
eval
(
detector_func
)(
pred_config
,
FLAGS
.
model_dir
,
device
=
FLAGS
.
device
,
run_mode
=
FLAGS
.
run_mode
,
batch_size
=
FLAGS
.
batch_size
,
trt_min_shape
=
FLAGS
.
trt_min_shape
,
trt_max_shape
=
FLAGS
.
trt_max_shape
,
trt_opt_shape
=
FLAGS
.
trt_opt_shape
,
trt_calib_mode
=
FLAGS
.
trt_calib_mode
,
cpu_threads
=
FLAGS
.
cpu_threads
,
enable_mkldnn
=
FLAGS
.
enable_mkldnn
)
pred_config
=
PredictConfig
(
FLAGS
.
reid_model_dir
)
reid_model
=
SDE_ReID
(
...
...
ppdet/modeling/mot/visualization.py
浏览文件 @
7441fba7
...
...
@@ -28,7 +28,7 @@ def plot_tracking(image,
scores
=
None
,
frame_id
=
0
,
fps
=
0.
,
ids2
=
None
):
ids2
names
=
[]
):
im
=
np
.
ascontiguousarray
(
np
.
copy
(
image
))
im_h
,
im_w
=
im
.
shape
[:
2
]
...
...
@@ -52,15 +52,16 @@ def plot_tracking(image,
intbox
=
tuple
(
map
(
int
,
(
x1
,
y1
,
x1
+
w
,
y1
+
h
)))
obj_id
=
int
(
obj_ids
[
i
])
id_text
=
'{}'
.
format
(
int
(
obj_id
))
if
ids2
is
not
None
:
id_text
=
id_text
+
', {}'
.
format
(
int
(
ids2
[
i
]))
if
ids2names
!=
[]:
assert
len
(
ids2names
)
==
1
,
"plot_tracking only supports single classes."
id_text
=
'{}_'
.
format
(
ids2names
[
0
])
+
id_text
_line_thickness
=
1
if
obj_id
<=
0
else
line_thickness
color
=
get_color
(
abs
(
obj_id
))
cv2
.
rectangle
(
im
,
intbox
[
0
:
2
],
intbox
[
2
:
4
],
color
=
color
,
thickness
=
line_thickness
)
cv2
.
putText
(
im
,
id_text
,
(
intbox
[
0
],
intbox
[
1
]
+
10
),
id_text
,
(
intbox
[
0
],
intbox
[
1
]
-
10
),
cv2
.
FONT_HERSHEY_PLAIN
,
text_scale
,
(
0
,
0
,
255
),
thickness
=
text_thickness
)
...
...
@@ -69,7 +70,7 @@ def plot_tracking(image,
text
=
'{:.2f}'
.
format
(
float
(
scores
[
i
]))
cv2
.
putText
(
im
,
text
,
(
intbox
[
0
],
intbox
[
1
]
-
10
),
text
,
(
intbox
[
0
],
intbox
[
1
]
+
10
),
cv2
.
FONT_HERSHEY_PLAIN
,
text_scale
,
(
0
,
255
,
255
),
thickness
=
text_thickness
)
...
...
@@ -83,7 +84,7 @@ def plot_tracking_dict(image,
scores_dict
,
frame_id
=
0
,
fps
=
0.
,
ids2
=
None
):
ids2
names
=
[]
):
im
=
np
.
ascontiguousarray
(
np
.
copy
(
image
))
im_h
,
im_w
=
im
.
shape
[:
2
]
...
...
@@ -111,10 +112,12 @@ def plot_tracking_dict(image,
x1
,
y1
,
w
,
h
=
tlwh
intbox
=
tuple
(
map
(
int
,
(
x1
,
y1
,
x1
+
w
,
y1
+
h
)))
obj_id
=
int
(
obj_ids
[
i
])
if
num_classes
==
1
:
id_text
=
'{}'
.
format
(
int
(
obj_id
))
id_text
=
'{}'
.
format
(
int
(
obj_id
))
if
ids2names
!=
[]:
id_text
=
'{}_{}'
.
format
(
ids2names
[
cls_id
],
id_text
)
else
:
id_text
=
'class{}_
id{}'
.
format
(
cls_id
,
int
(
obj_id
)
)
id_text
=
'class{}_
{}'
.
format
(
cls_id
,
id_text
)
_line_thickness
=
1
if
obj_id
<=
0
else
line_thickness
color
=
get_color
(
abs
(
obj_id
))
...
...
@@ -126,7 +129,7 @@ def plot_tracking_dict(image,
thickness
=
line_thickness
)
cv2
.
putText
(
im
,
id_text
,
(
intbox
[
0
],
intbox
[
1
]
+
10
),
id_text
,
(
intbox
[
0
],
intbox
[
1
]
-
10
),
cv2
.
FONT_HERSHEY_PLAIN
,
text_scale
,
(
0
,
0
,
255
),
thickness
=
text_thickness
)
...
...
@@ -135,7 +138,7 @@ def plot_tracking_dict(image,
text
=
'{:.2f}'
.
format
(
float
(
scores
[
i
]))
cv2
.
putText
(
im
,
text
,
(
intbox
[
0
],
intbox
[
1
]
-
10
),
text
,
(
intbox
[
0
],
intbox
[
1
]
+
10
),
cv2
.
FONT_HERSHEY_PLAIN
,
text_scale
,
(
0
,
255
,
255
),
thickness
=
text_thickness
)
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录