Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleDetection
提交
739ff181
P
PaddleDetection
项目概览
PaddlePaddle
/
PaddleDetection
1 年多 前同步成功
通知
696
Star
11112
Fork
2696
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
184
列表
看板
标记
里程碑
合并请求
40
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
184
Issue
184
列表
看板
标记
里程碑
合并请求
40
合并请求
40
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
739ff181
编写于
2月 27, 2017
作者:
Y
Yu Yang
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
V2.testing complete
上级
37d54cb7
变更
3
隐藏空白更改
内联
并排
Showing
3 changed file
with
104 addition
and
52 deletion
+104
-52
demo/mnist/api_train_v2.py
demo/mnist/api_train_v2.py
+16
-15
python/paddle/v2/event.py
python/paddle/v2/event.py
+9
-1
python/paddle/v2/trainer.py
python/paddle/v2/trainer.py
+79
-36
未找到文件。
demo/mnist/api_train_v2.py
浏览文件 @
739ff181
...
...
@@ -21,28 +21,29 @@ def main():
adam_optimizer
=
paddle
.
optimizer
.
Adam
(
learning_rate
=
0.01
)
trainer
=
paddle
.
trainer
.
SGD
(
topology
=
cost
,
parameters
=
parameters
,
update_equation
=
adam_optimizer
)
def
event_handler
(
event
):
if
isinstance
(
event
,
paddle
.
event
.
EndIteration
):
if
event
.
batch_id
%
100
==
0
:
print
"Pass %d, Batch %d, Cost %f, %s"
%
(
event
.
pass_id
,
event
.
batch_id
,
event
.
cost
,
event
.
metrics
)
if
event
.
batch_id
%
1000
==
0
:
result
=
trainer
.
test
(
reader
=
paddle
.
reader
.
batched
(
paddle
.
dataset
.
mnist
.
test_creator
(),
batch_size
=
256
))
print
"Pass %d, Batch %d, Cost %f, %s, Testing metrics %s"
%
(
event
.
pass_id
,
event
.
batch_id
,
event
.
cost
,
event
.
metrics
,
result
.
metrics
)
else
:
pass
trainer
=
paddle
.
trainer
.
SGD
(
update_equation
=
adam_optimizer
)
trainer
.
train
(
reader
=
paddle
.
reader
.
batched
(
paddle
.
reader
.
shuffle
(
paddle
.
dataset
.
mnist
.
train_creator
(),
buf_size
=
8192
),
batch_size
=
32
),
topology
=
cost
,
parameters
=
parameters
,
event_handler
=
event_handler
,
data_types
=
[
# data_types will be removed, It should be in
# network topology
(
'pixel'
,
images
.
type
),
(
'label'
,
label
.
type
)],
reader_dict
=
{
'pixel'
:
0
,
'label'
:
1
}
)
paddle
.
reader
.
shuffle
(
paddle
.
dataset
.
mnist
.
train_creator
(),
buf_size
=
8192
),
batch_size
=
32
),
event_handler
=
event_handler
)
if
__name__
==
'__main__'
:
...
...
python/paddle/v2/event.py
浏览文件 @
739ff181
...
...
@@ -11,7 +11,10 @@ There are:
TODO(yuyang18): Complete it!
"""
import
py_paddle.swig_paddle
as
api
__all__
=
[
'EndIteration'
,
'BeginIteration'
,
'BeginPass'
,
'EndPass'
]
__all__
=
[
'EndIteration'
,
'BeginIteration'
,
'BeginPass'
,
'EndPass'
,
'TestResult'
]
class
WithMetric
(
object
):
...
...
@@ -30,6 +33,11 @@ class WithMetric(object):
return
retv
class
TestResult
(
WithMetric
):
def
__init__
(
self
,
evaluator
):
super
(
TestResult
,
self
).
__init__
(
evaluator
)
class
BeginPass
(
object
):
"""
Event On One Pass Training Start.
...
...
python/paddle/v2/trainer.py
浏览文件 @
739ff181
...
...
@@ -23,6 +23,13 @@ def default_event_handler(event):
pass
def
__bfs_travel_topology__
(
callback
,
*
topologies
):
for
each_layer
in
topologies
:
callback
(
each_layer
)
__bfs_travel_topology__
(
callback
,
*
each_layer
.
__parent_layers__
.
values
())
class
ITrainer
(
object
):
"""
The interface of Trainer. The only exposed method is `train`.
...
...
@@ -43,26 +50,49 @@ class ITrainer(object):
class
SGD
(
ITrainer
):
def
__init__
(
self
,
update_equation
):
def
__init__
(
self
,
topology
,
parameters
,
update_equation
):
"""
Simple SGD Trainer.
:param update_equation: The optimizer object.
:type update_equation: v2_optimizer.Optimizer
"""
if
not
isinstance
(
parameters
,
v2_parameters
.
Parameters
):
raise
TypeError
(
'parameters should be parameters'
)
if
not
isinstance
(
update_equation
,
v2_optimizer
.
Optimizer
):
raise
Valu
eError
(
"update equation parameter must be "
"paddle.v2.optimizer.Optimizer"
)
raise
Typ
eError
(
"update equation parameter must be "
"paddle.v2.optimizer.Optimizer"
)
self
.
__optimizer__
=
update_equation
self
.
__topology__
=
topology
self
.
__parameters__
=
parameters
self
.
__topology_in_proto__
=
v2_layer
.
parse_network
(
topology
)
data_types
=
dict
()
def
__travel__
(
l
):
if
hasattr
(
l
,
'type'
):
data_types
[
l
.
name
]
=
l
.
type
if
not
isinstance
(
topology
,
collections
.
Sequence
):
topology
=
[
topology
]
__bfs_travel_topology__
(
__travel__
,
*
topology
)
self
.
__data_types__
=
[
(
iname
,
data_types
[
iname
])
for
iname
in
self
.
__topology_in_proto__
.
input_layer_names
]
if
not
isinstance
(
self
.
__topology_in_proto__
,
ModelConfig
):
raise
TypeError
(
'topology should be a model config'
)
def
train
(
self
,
reader
,
topology
,
parameters
,
num_passes
=
1
,
event_handler
=
None
,
data_types
=
None
,
reader_dict
=
None
):
gm
=
api
.
GradientMachine
.
createFromConfigProto
(
self
.
__topology_in_proto__
,
api
.
CREATE_MODE_NORMAL
,
self
.
__optimizer__
.
enable_types
())
assert
isinstance
(
gm
,
api
.
GradientMachine
)
parameters
.
append_gradient_machine
(
gm
)
self
.
__gradient_machine__
=
gm
self
.
__gradient_machine__
.
randParameters
()
def
train
(
self
,
reader
,
num_passes
=
1
,
event_handler
=
None
,
reader_dict
=
None
):
"""
Training method. Will train num_passes of input data.
...
...
@@ -79,26 +109,21 @@ class SGD(ITrainer):
if
event_handler
is
None
:
event_handler
=
default_event_handler
topology
=
v2_layer
.
parse_network
(
topology
)
if
reader_dict
is
None
:
reader_dict
=
self
.
default_reader_dict
()
__check_train_args__
(
**
locals
())
gm
=
api
.
GradientMachine
.
createFromConfigProto
(
topology
,
api
.
CREATE_MODE_NORMAL
,
self
.
__optimizer__
.
enable_types
())
assert
isinstance
(
gm
,
api
.
GradientMachine
)
parameters
.
append_gradient_machine
(
gm
)
gm
.
randParameters
()
updater
=
self
.
__optimizer__
.
create_local_updater
()
updater
.
init
(
gm
)
updater
.
init
(
self
.
__gradient_machine__
)
gm
.
start
()
batch_evaluator
=
gm
.
makeEvaluator
()
self
.
__gradient_machine__
.
start
()
batch_evaluator
=
self
.
__gradient_machine__
.
makeEvaluator
()
assert
isinstance
(
batch_evaluator
,
api
.
Evaluator
)
pass_evaluator
=
gm
.
makeEvaluator
()
pass_evaluator
=
self
.
__gradient_machine__
.
makeEvaluator
()
assert
isinstance
(
pass_evaluator
,
api
.
Evaluator
)
out_args
=
api
.
Arguments
.
createArguments
(
0
)
feeder
=
DataFeeder
(
data_types
,
reader_dict
)
feeder
=
DataFeeder
(
self
.
__data_types__
,
reader_dict
)
for
pass_id
in
xrange
(
num_passes
):
event_handler
(
v2_event
.
BeginPass
(
pass_id
))
...
...
@@ -106,16 +131,18 @@ class SGD(ITrainer):
updater
.
startPass
()
for
batch_id
,
data_batch
in
enumerate
(
reader
()):
pass_type
=
updater
.
startBatch
(
len
(
data_batch
))
gm
.
forwardBackward
(
feeder
(
data_batch
),
out_args
,
pass_type
)
self
.
__gradient_machine__
.
forwardBackward
(
feeder
(
data_batch
),
out_args
,
pass_type
)
batch_evaluator
.
start
()
event_handler
(
v2_event
.
BeginIteration
(
pass_id
=
pass_id
,
batch_id
=
batch_id
))
pass_type
=
updater
.
startBatch
(
len
(
data_batch
))
gm
.
forwardBackward
(
feeder
(
data_batch
),
out_args
,
pass_type
)
gm
.
eval
(
pass_evaluator
)
gm
.
eval
(
batch_evaluator
)
for
each_param
in
gm
.
getParameters
():
self
.
__gradient_machine__
.
forwardBackward
(
feeder
(
data_batch
),
out_args
,
pass_type
)
self
.
__gradient_machine__
.
eval
(
pass_evaluator
)
self
.
__gradient_machine__
.
eval
(
batch_evaluator
)
for
each_param
in
self
.
__gradient_machine__
.
getParameters
():
updater
.
update
(
each_param
)
# Get cost. We use numpy to calculate total cost for this batch.
cost_vec
=
out_args
.
getSlotValue
(
0
)
...
...
@@ -133,10 +160,32 @@ class SGD(ITrainer):
updater
.
finishPass
()
pass_evaluator
.
finish
()
event_handler
(
v2_event
.
EndPass
(
pass_id
,
evaluator
=
pass_evaluator
))
gm
.
finish
()
self
.
__gradient_machine__
.
finish
()
def
default_reader_dict
(
self
):
reader_dict
=
dict
()
for
i
,
tp
in
enumerate
(
self
.
__data_types__
):
reader_dict
[
tp
[
0
]]
=
i
return
reader_dict
def
test
(
self
,
reader
,
reader_dict
=
None
):
if
reader_dict
is
None
:
reader_dict
=
self
.
default_reader_dict
()
feeder
=
DataFeeder
(
self
.
__data_types__
,
reader_dict
)
evaluator
=
self
.
__gradient_machine__
.
makeEvaluator
()
out_args
=
api
.
Arguments
.
createArguments
(
0
)
evaluator
.
start
()
for
data_batch
in
reader
():
self
.
__gradient_machine__
.
forward
(
feeder
(
data_batch
),
out_args
,
api
.
PASS_TEST
)
self
.
__gradient_machine__
.
eval
(
evaluator
)
def
__check_train_args__
(
reader
,
topology
,
parameters
,
event_handler
,
**
kwargs
):
evaluator
.
finish
()
return
v2_event
.
TestResult
(
evaluator
=
evaluator
)
def
__check_train_args__
(
reader
,
event_handler
,
**
kwargs
):
"""
Check train function's argument types
"""
...
...
@@ -144,11 +193,5 @@ def __check_train_args__(reader, topology, parameters, event_handler, **kwargs):
raise
TypeError
(
'train_data_reader should be a function, '
'which can return a iterator'
)
if
not
isinstance
(
topology
,
ModelConfig
):
raise
TypeError
(
'topology should be a model config'
)
if
not
isinstance
(
parameters
,
v2_parameters
.
Parameters
):
raise
TypeError
(
'parameters should be a parameter pool'
)
if
not
callable
(
event_handler
):
raise
TypeError
(
'event handler should be a function'
)
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录