Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleDetection
提交
734e87e5
P
PaddleDetection
项目概览
PaddlePaddle
/
PaddleDetection
1 年多 前同步成功
通知
696
Star
11112
Fork
2696
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
184
列表
看板
标记
里程碑
合并请求
40
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
184
Issue
184
列表
看板
标记
里程碑
合并请求
40
合并请求
40
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
734e87e5
编写于
12月 15, 2017
作者:
Y
yangyaming
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Add python wrapper for lstm unit op.
上级
c13805e9
变更
3
隐藏空白更改
内联
并排
Showing
3 changed file
with
132 addition
and
8 deletion
+132
-8
doc/api/v2/fluid/layers.rst
doc/api/v2/fluid/layers.rst
+5
-6
python/paddle/v2/fluid/layers/nn.py
python/paddle/v2/fluid/layers/nn.py
+110
-2
python/paddle/v2/fluid/tests/test_layers.py
python/paddle/v2/fluid/tests/test_layers.py
+17
-0
未找到文件。
doc/api/v2/fluid/layers.rst
浏览文件 @
734e87e5
...
@@ -188,12 +188,6 @@ beam_search_decode
...
@@ -188,12 +188,6 @@ beam_search_decode
:noindex:
:noindex:
lstm
---------
.. autofunction:: paddle.v2.fluid.layers.lstm
:noindex:
lod_rank_table
lod_rank_table
---------
---------
.. autofunction:: paddle.v2.fluid.layers.lod_rank_table
.. autofunction:: paddle.v2.fluid.layers.lod_rank_table
...
@@ -300,3 +294,8 @@ conv2d_transpose
...
@@ -300,3 +294,8 @@ conv2d_transpose
.. autofunction:: paddle.v2.fluid.layers.conv2d_transpose
.. autofunction:: paddle.v2.fluid.layers.conv2d_transpose
:noindex:
:noindex:
lstm_unit
---------
.. autofunction:: paddle.v2.fluid.layers.lstm_unit
:noindex:
python/paddle/v2/fluid/layers/nn.py
浏览文件 @
734e87e5
...
@@ -5,12 +5,13 @@ All layers just related to the neural network.
...
@@ -5,12 +5,13 @@ All layers just related to the neural network.
from
..layer_helper
import
LayerHelper
from
..layer_helper
import
LayerHelper
from
..initializer
import
Normal
,
Constant
from
..initializer
import
Normal
,
Constant
from
..framework
import
Variable
from
..framework
import
Variable
from
tensor
import
concat
__all__
=
[
__all__
=
[
'fc'
,
'embedding'
,
'dynamic_lstm'
,
'gru_unit'
,
'linear_chain_crf'
,
'fc'
,
'embedding'
,
'dynamic_lstm'
,
'gru_unit'
,
'linear_chain_crf'
,
'crf_decoding'
,
'cos_sim'
,
'cross_entropy'
,
'square_error_cost'
,
'accuracy'
,
'crf_decoding'
,
'cos_sim'
,
'cross_entropy'
,
'square_error_cost'
,
'accuracy'
,
'chunk_eval'
,
'sequence_conv'
,
'conv2d'
,
'sequence_pool'
,
'pool2d'
,
'chunk_eval'
,
'sequence_conv'
,
'conv2d'
,
'sequence_pool'
,
'pool2d'
,
'batch_norm'
,
'beam_search_decode'
,
'conv2d_transpose'
'batch_norm'
,
'beam_search_decode'
,
'conv2d_transpose'
,
'lstm_unit'
]
]
...
@@ -392,7 +393,7 @@ def chunk_eval(input,
...
@@ -392,7 +393,7 @@ def chunk_eval(input,
excluded_chunk_types
=
None
,
excluded_chunk_types
=
None
,
**
kwargs
):
**
kwargs
):
"""
"""
This function computes and outputs the precision, recall and
This function computes and outputs the precision, recall and
F1-score of chunk detection.
F1-score of chunk detection.
"""
"""
helper
=
LayerHelper
(
"chunk_eval"
,
**
kwargs
)
helper
=
LayerHelper
(
"chunk_eval"
,
**
kwargs
)
...
@@ -789,3 +790,110 @@ def conv2d_transpose(input,
...
@@ -789,3 +790,110 @@ def conv2d_transpose(input,
attrs
=
op_attr
)
attrs
=
op_attr
)
return
out
return
out
def
lstm_unit
(
x_t
,
hidden_t_prev
,
cell_t_prev
,
forget_bias
=
0.0
,
main_program
=
None
,
startup_program
=
None
):
"""Lstm unit layer. The equation of a lstm step is:
.. math::
i_t & = \sigma(W_{x_i}x_{t} + W_{h_i}h_{t-1} + W_{c_i}c_{t-1} + b_i)
f_t & = \sigma(W_{x_f}x_{t} + W_{h_f}h_{t-1} + W_{c_f}c_{t-1} + b_f)
c_t & = f_tc_{t-1} + i_t tanh (W_{x_c}x_t+W_{h_c}h_{t-1} + b_c)
o_t & = \sigma(W_{x_o}x_{t} + W_{h_o}h_{t-1} + W_{c_o}c_t + b_o)
h_t & = o_t tanh(c_t)
The inputs of lstm unit includes :math:`x_t`, :math:`h_{t-1}` and
:math:`c_{t-1}`. The implementation separates the linear transformation
and non-linear transformation apart. Here, we take :math:`i_t` as an
example. The linear transformation is applied by calling a `fc` layer and
the equation is:
.. math::
L_{i_t} = W_{x_i}x_{t} + W_{h_i}h_{t-1} + W_{c_i}c_{t-1} + b_i
The non-linear transformation is applied by calling `lstm_unit_op` and the
equation is:
.. math::
i_t = \sigma(L_{i_t})
This layer has two outputs including :math:`o_t` and :math:`h_t`.
Args:
x_t (Variable): The input value of current step.
hidden_t_prev (Variable): The hidden value of lstm unit.
cell_t_prev (Variable): The cell value of lstm unit.
forget_bias (float): The forget bias of lstm unit.
main_program (Program): The main program.
startup_program (Program): the startup program.
Returns:
tuple: The cell value and hidden value of lstm unit.
Raises:
ValueError: The ranks of **x_t**, **hidden_t_prev** and **cell_t_prev**
\
not be 2 or the 1st dimensions of **x_t**, **hidden_t_prev**
\
and **cell_t_prev** not be the same.
Examples:
.. code-block:: python
x_t = fluid.layers.fc(input=x_t_data, size=10)
prev_hidden = fluid.layers.fc(input=prev_hidden_data, size=20)
prev_cell = fluid.layers.fc(input=prev_cell_data, size=30)
cell_value, hidden_value = fluid.layers.lstm_unit(x_t=x_t,
hidden_t_prev=prev_hidden,
cell_t_prev=prev_cell)
"""
helper
=
LayerHelper
(
'lstm_unit'
,
**
locals
())
if
len
(
x_t
.
shape
)
!=
2
:
raise
ValueError
(
"Rank of x_t must be 2."
)
if
len
(
hidden_t_prev
.
shape
)
!=
2
:
raise
ValueError
(
"Rank of hidden_t_prev must be 2."
)
if
len
(
cell_t_prev
.
shape
)
!=
2
:
raise
ValueError
(
"Rank of cell_t_prev must be 2."
)
if
x_t
.
shape
[
0
]
!=
hidden_t_prev
.
shape
[
0
]
or
x_t
.
shape
[
0
]
!=
cell_t_prev
.
shape
[
0
]:
raise
ValueError
(
"The 1s dimension of x_t, hidden_t_prev and "
"cell_t_prev must be the same."
)
size
=
cell_t_prev
.
shape
[
1
]
concat_out
=
concat
(
input
=
[
x_t
,
hidden_t_prev
],
axis
=
1
,
main_program
=
main_program
,
startup_program
=
startup_program
)
fc_out
=
fc
(
input
=
concat_out
,
size
=
4
*
size
,
main_program
=
main_program
,
startup_program
=
startup_program
)
dtype
=
x_t
.
dtype
c
=
helper
.
create_tmp_variable
(
dtype
)
h
=
helper
.
create_tmp_variable
(
dtype
)
helper
.
append_op
(
type
=
'lstm_unit'
,
inputs
=
{
"X"
:
fc_out
,
"C_prev"
:
cell_t_prev
},
outputs
=
{
"C"
:
c
,
"H"
:
h
},
attrs
=
{
"forget_bias"
:
forget_bias
})
return
c
,
h
python/paddle/v2/fluid/tests/test_layers.py
浏览文件 @
734e87e5
...
@@ -161,6 +161,23 @@ class TestBook(unittest.TestCase):
...
@@ -161,6 +161,23 @@ class TestBook(unittest.TestCase):
x
=
dat
,
label
=
lbl
))
x
=
dat
,
label
=
lbl
))
print
(
str
(
program
))
print
(
str
(
program
))
def
test_lstm_unit
(
self
):
program
=
Program
()
with
program_guard
(
program
):
x_t_data
=
layers
.
data
(
name
=
'x_t_data'
,
shape
=
[
10
,
10
],
dtype
=
'float32'
)
x_t
=
layers
.
fc
(
input
=
x_t_data
,
size
=
10
)
prev_hidden_data
=
layers
.
data
(
name
=
'prev_hidden_data'
,
shape
=
[
10
,
20
],
dtype
=
'float32'
)
prev_hidden
=
layers
.
fc
(
input
=
prev_hidden_data
,
size
=
20
)
prev_cell_data
=
layers
.
data
(
name
=
'prev_cell'
,
shape
=
[
10
,
30
],
dtype
=
'float32'
)
prev_cell
=
layers
.
fc
(
input
=
prev_cell_data
,
size
=
30
)
self
.
assertIsNotNone
(
layers
.
lstm_unit
(
x_t
=
x_t
,
hidden_t_prev
=
prev_hidden
,
cell_t_prev
=
prev_cell
))
print
(
str
(
program
))
if
__name__
==
'__main__'
:
if
__name__
==
'__main__'
:
unittest
.
main
()
unittest
.
main
()
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录