未验证 提交 73291012 编写于 作者: X xiaoluomi 提交者: GitHub

add rtdetr act demo (#8211)

* add rtdetr act demo

* add act rtdetr
上级 6042fcd8
......@@ -60,6 +60,27 @@ git
- mAP的指标均在COCO val2017数据集中评测得到,IoU=0.5:0.95。
### RT-DETR
| 模型 | Base mAP | ACT量化mAP | TRT-FP32 | TRT-FP16 | TRT-INT8 | 配置文件 | 量化模型 |
| :---------------- | :------- | :--------: | :------: | :------: | :--------: | :----------------------------------------------------------: | :----------------------------------------------------------: |
| RT-DETR-R50 | 53.1 | 53.0 | 32.05ms | 9.12ms | **6.96ms** | [config](https://github.com/PaddlePaddle/PaddleSlim/blob/develop/example/auto_compression/detection/configs/rtdetr_r50vd_qat_dis.yaml) | [Model](https://bj.bcebos.com/v1/paddle-slim-models/act/rtdetr_r50vd_6x_coco_quant.tar) |
| RT-DETR-R101 | 54.3 | 54.1 | 54.13ms | 12.68ms | **9.20ms** | [config](https://github.com/PaddlePaddle/PaddleSlim/blob/develop/example/auto_compression/detection/configs/rtdetr_r101vd_qat_dis.yaml) | [Model](https://bj.bcebos.com/v1/paddle-slim-models/act/rtdetr_r101vd_6x_coco_quant.tar) |
| RT-DETR-HGNetv2-L | 53.0 | 52.9 | 26.16ms | 8.54ms | **6.65ms** | [config](https://github.com/PaddlePaddle/PaddleSlim/blob/develop/example/auto_compression/detection/configs/rtdetr_hgnetv2_l_qat_dis.yaml) | [Model](https://bj.bcebos.com/v1/paddle-slim-models/act/rtdetr_hgnetv2_l_6x_coco_quant.tar) |
| RT-DETR-HGNetv2-X | 54.8 | 54.6 | 49.22ms | 12.50ms | **9.24ms** | [config](https://github.com/PaddlePaddle/PaddleSlim/blob/develop/example/auto_compression/detection/configs/rtdetr_hgnetv2_x_qat_dis.yaml) | [Model](https://bj.bcebos.com/v1/paddle-slim-models/act/rtdetr_hgnetv2_x_6x_coco_quant.tar) |
- 上表测试环境:Tesla T4,TensorRT 8.6.0,CUDA 11.7,batch_size=1。
| 模型 | Base mAP | ACT量化mAP | TRT-FP32 | TRT-FP16 | TRT-INT8 | 配置文件 | 量化模型 |
| :---------------- | :------- | :--------: | :------: | :------: | :--------: | :----------------------------------------------------------: | :----------------------------------------------------------: |
| RT-DETR-R50 | 53.1 | 53.0 | 9.64ms | 5.00ms | **3.99ms** | [config](https://github.com/PaddlePaddle/PaddleSlim/blob/develop/example/auto_compression/detection/configs/rtdetr_r50vd_qat_dis.yaml) | [Model](https://bj.bcebos.com/v1/paddle-slim-models/act/rtdetr_r50vd_6x_coco_quant.tar) |
| RT-DETR-R101 | 54.3 | 54.1 | 14.93ms | 7.15ms | **5.12ms** | [config](https://github.com/PaddlePaddle/PaddleSlim/blob/develop/example/auto_compression/detection/configs/rtdetr_r101vd_qat_dis.yaml) | [Model](https://bj.bcebos.com/v1/paddle-slim-models/act/rtdetr_r101vd_6x_coco_quant.tar) |
| RT-DETR-HGNetv2-L | 53.0 | 52.9 | 8.17ms | 4.77ms | **4.00ms** | [config](https://github.com/PaddlePaddle/PaddleSlim/blob/develop/example/auto_compression/detection/configs/rtdetr_hgnetv2_l_qat_dis.yaml) | [Model](https://bj.bcebos.com/v1/paddle-slim-models/act/rtdetr_hgnetv2_l_6x_coco_quant.tar) |
| RT-DETR-HGNetv2-X | 54.8 | 54.6 | 12.81ms | 6.97ms | **5.32ms** | [config](https://github.com/PaddlePaddle/PaddleSlim/blob/develop/example/auto_compression/detection/configs/rtdetr_hgnetv2_x_qat_dis.yaml) | [Model](https://bj.bcebos.com/v1/paddle-slim-models/act/rtdetr_hgnetv2_x_6x_coco_quant.tar) |
- 上表测试环境:A10,TensorRT 8.6.0,CUDA 11.6,batch_size=1。
- mAP的指标均在COCO val2017数据集中评测得到,IoU=0.5:0.95。
## 3. 自动压缩流程
#### 3.1 准备环境
......
Global:
reader_config: configs/rtdetr_reader.yml
include_nms: True
Evaluation: True
model_dir: ./rtdetr_hgnetv2_l_6x_coco/
model_filename: model.pdmodel
params_filename: model.pdiparams
Distillation:
alpha: 1.0
loss: soft_label
QuantAware:
onnx_format: true
activation_quantize_type: 'moving_average_abs_max'
quantize_op_types:
- conv2d
- depthwise_conv2d
- matmul_v2
TrainConfig:
train_iter: 200
eval_iter: 50
learning_rate:
type: CosineAnnealingDecay
learning_rate: 0.00003
T_max: 10000
optimizer_builder:
optimizer:
type: SGD
weight_decay: 4.0e-05
Global:
reader_config: configs/rtdetr_reader.yml
include_nms: True
Evaluation: True
model_dir: ./rtdetr_r50vd_6x_coco/
model_filename: model.pdmodel
params_filename: model.pdiparams
Distillation:
alpha: 1.0
loss: soft_label
QuantAware:
onnx_format: true
activation_quantize_type: 'moving_average_abs_max'
quantize_op_types:
- conv2d
- depthwise_conv2d
- matmul_v2
TrainConfig:
train_iter: 500
eval_iter: 100
learning_rate:
type: CosineAnnealingDecay
learning_rate: 0.00003
T_max: 10000
optimizer_builder:
optimizer:
type: SGD
weight_decay: 4.0e-05
Global:
reader_config: configs/rtdetr_reader.yml
include_nms: True
Evaluation: True
model_dir: ./rtdetr_hgnetv2_x_6x_coco/
model_filename: model.pdmodel
params_filename: model.pdiparams
Distillation:
alpha: 1.0
loss: soft_label
QuantAware:
onnx_format: true
activation_quantize_type: 'moving_average_abs_max'
quantize_op_types:
- conv2d
- depthwise_conv2d
- matmul_v2
TrainConfig:
train_iter: 200
eval_iter: 50
learning_rate:
type: CosineAnnealingDecay
learning_rate: 0.00003
T_max: 10000
optimizer_builder:
optimizer:
type: SGD
weight_decay: 4.0e-05
Global:
reader_config: configs/rtdetr_reader.yml
include_nms: True
Evaluation: True
model_dir: ./rtdetr_r50vd_6x_coco/
model_filename: model.pdmodel
params_filename: model.pdiparams
Distillation:
alpha: 1.0
loss: soft_label
QuantAware:
onnx_format: true
activation_quantize_type: 'moving_average_abs_max'
quantize_op_types:
- conv2d
- depthwise_conv2d
- matmul_v2
TrainConfig:
train_iter: 500
eval_iter: 100
learning_rate:
type: CosineAnnealingDecay
learning_rate: 0.00003
T_max: 10000
optimizer_builder:
optimizer:
type: SGD
weight_decay: 4.0e-05
metric: COCO
num_classes: 80
# Datset configuration
TrainDataset:
!COCODataSet
image_dir: train2017
anno_path: annotations/instances_train2017.json
dataset_dir: dataset/coco/
!COCODataSet
image_dir: val2017
anno_path: annotations/instances_val2017.json
dataset_dir: dataset/coco/
worker_num: 0
# preprocess reader in test
EvalReader:
sample_transforms:
- Decode: {}
- Resize: {target_size: [640, 640], keep_ratio: False, interp: 2}
- NormalizeImage: {mean: [0., 0., 0.], std: [1., 1., 1.], norm_type: none}
- Permute: {}
batch_size: 1
shuffle: false
drop_last: false
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册