- We use a multi-scale evaluation strategy to get the mAP in `Easy/Medium/Hard Set`. Please refer to the [evaluation on the WIDER FACE dataset](#Evaluated-on-the-WIDER-FACE-Dataset) for details.
- We use a multi-scale evaluation strategy to get the mAP in `Easy/Medium/Hard Set`. Please refer to the [evaluation on the WIDER FACE dataset](#Evaluated-on-the-WIDER-FACE-Dataset) for details.
@@ -46,7 +46,7 @@ We also release [PP-TinyPose](./tiny_pose/README_en.md), a real-time keypoint de
...
@@ -46,7 +46,7 @@ We also release [PP-TinyPose](./tiny_pose/README_en.md), a real-time keypoint de
### 1. Environmental Installation
### 1. Environmental Installation
Please refer to [PaddleDetection Installation Guild](https://github.com/PaddlePaddle/PaddleDetection/blob/develop/docs/tutorials/INSTALL.md) to install PaddlePaddle and PaddleDetection correctly.
Please refer to [PaddleDetection Installation Guild](https://github.com/PaddlePaddle/PaddleDetection/blob/release/2.4/docs/tutorials/INSTALL.md) to install PaddlePaddle and PaddleDetection correctly.
@@ -17,7 +17,7 @@ The network for detecting vehicles is YOLOv3, the backbone of which is Dacknet53
...
@@ -17,7 +17,7 @@ The network for detecting vehicles is YOLOv3, the backbone of which is Dacknet53
### 2. Configuration for training
### 2. Configuration for training
PaddleDetection provides users with a configuration file [yolov3_darknet53_270e_coco.yml](https://github.com/PaddlePaddle/PaddleDetection/blob/develop/configs/yolov3/yolov3_darknet53_270e_coco.yml) to train YOLOv3 on the COCO dataset, compared with this file, we modify some parameters as followed to conduct the training for pedestrian detection:
PaddleDetection provides users with a configuration file [yolov3_darknet53_270e_coco.yml](https://github.com/PaddlePaddle/PaddleDetection/blob/release/2.4/configs/yolov3/yolov3_darknet53_270e_coco.yml) to train YOLOv3 on the COCO dataset, compared with this file, we modify some parameters as followed to conduct the training for pedestrian detection:
在模型压缩中,常见的稀疏方式为结构化稀疏和非结构化稀疏,前者在某个特定维度(特征通道、卷积核等等)上对卷积、矩阵乘法进行剪枝操作,然后生成一个更小的模型结构,这样可以复用已有的卷积、矩阵乘计算,无需特殊实现推理算子;后者以每一个参数为单元进行稀疏化,然而并不会改变参数矩阵的形状,所以更依赖于推理库、硬件对于稀疏后矩阵运算的加速能力。我们在 PP-PicoDet (以下简称PicoDet) 模型上运用了非结构化稀疏技术,在精度损失较小时,获得了在 ARM CPU 端推理的显著性能提升。本文档会介绍如何非结构化稀疏训练 PicoDet,关于非结构化稀疏的更多介绍请参照[这里](https://github.com/PaddlePaddle/PaddleSlim/tree/develop/demo/dygraph/unstructured_pruning)。
在模型压缩中,常见的稀疏方式为结构化稀疏和非结构化稀疏,前者在某个特定维度(特征通道、卷积核等等)上对卷积、矩阵乘法进行剪枝操作,然后生成一个更小的模型结构,这样可以复用已有的卷积、矩阵乘计算,无需特殊实现推理算子;后者以每一个参数为单元进行稀疏化,然而并不会改变参数矩阵的形状,所以更依赖于推理库、硬件对于稀疏后矩阵运算的加速能力。我们在 PP-PicoDet (以下简称PicoDet) 模型上运用了非结构化稀疏技术,在精度损失较小时,获得了在 ARM CPU 端推理的显著性能提升。本文档会介绍如何非结构化稀疏训练 PicoDet,关于非结构化稀疏的更多介绍请参照[这里](https://github.com/PaddlePaddle/PaddleSlim/tree/release/2.4/demo/dygraph/unstructured_pruning)。
- PP-YOLOE is trained on COCO train2017 dataset and evaluated on val2017 & test-dev2017 dataset,Box AP<sup>test</sup> is evaluation results of `mAP(IoU=0.5:0.95)`.
- PP-YOLOE is trained on COCO train2017 dataset and evaluated on val2017 & test-dev2017 dataset,Box AP<sup>test</sup> is evaluation results of `mAP(IoU=0.5:0.95)`.
- PP-YOLOE used 8 GPUs for mixed precision training, if GPU number and mini-batch size is changed, learning rate and iteration times should be adjusted according [FAQ](https://github.com/PaddlePaddle/PaddleDetection/blob/develop/docs/tutorials/FAQ).
- PP-YOLOE used 8 GPUs for mixed precision training, if GPU number and mini-batch size is changed, learning rate and iteration times should be adjusted according [FAQ](https://github.com/PaddlePaddle/PaddleDetection/blob/release/2.4/docs/tutorials/FAQ).
- PP-YOLOE inference speed is tesed on single Tesla V100 with batch size as 1, CUDA 10.2, CUDNN 7.6.5, TensorRT 6.0.1.8 in TensorRT mode.
- PP-YOLOE inference speed is tesed on single Tesla V100 with batch size as 1, CUDA 10.2, CUDNN 7.6.5, TensorRT 6.0.1.8 in TensorRT mode.
- PP-YOLOE inference speed testing uses inference model exported by `tools/export_model.py` with `-o exclude_nms=True` and benchmarked by running `depoly/python/infer.py` with `--run_benchmark`. All testing results do not contains the time cost of data reading and post-processing(NMS), which is same as [YOLOv4(AlexyAB)](https://github.com/AlexeyAB/darknet) in testing method.
- PP-YOLOE inference speed testing uses inference model exported by `tools/export_model.py` with `-o exclude_nms=True` and benchmarked by running `depoly/python/infer.py` with `--run_benchmark`. All testing results do not contains the time cost of data reading and post-processing(NMS), which is same as [YOLOv4(AlexyAB)](https://github.com/AlexeyAB/darknet) in testing method.
- If you set `--run_benchmark=True`,you should install these dependencies at first, `pip install pynvml psutil GPUtil`.
- If you set `--run_benchmark=True`,you should install these dependencies at first, `pip install pynvml psutil GPUtil`.
| Backbone | Network type | Number of images per GPU | Learning rate strategy | Inferring time(fps) | Box AP | Mask AP | Download | Configuration File |
| Backbone | Network type | Number of images per GPU | Learning rate strategy | Inferring time(fps) | Box AP | Mask AP | Download | Configuration File |
COCO数据集作为目标检测任务的训练目标难度更大,意味着teacher网络会预测出更多的背景bbox,如果直接用teacher的预测输出作为student学习的`soft label`会有严重的类别不均衡问题。解决这个问题需要引入新的方法,详细背景请参考论文:[Object detection at 200 Frames Per Second](https://arxiv.org/abs/1805.06361)。
COCO数据集作为目标检测任务的训练目标难度更大,意味着teacher网络会预测出更多的背景bbox,如果直接用teacher的预测输出作为student学习的`soft label`会有严重的类别不均衡问题。解决这个问题需要引入新的方法,详细背景请参考论文:[Object detection at 200 Frames Per Second](https://arxiv.org/abs/1805.06361)。
**Attention:** Due to the overall upgrade of the dynamic graph framework, the weighting model published by PaddleDetection of PAF Net needs to be evaluated with a --bias field, for example
**Attention:** Due to the overall upgrade of the dynamic graph framework, the weighting model published by PaddleDetection of PAF Net needs to be evaluated with a --bias field, for example
@@ -17,7 +17,7 @@ The network for detecting vehicles is YOLOv3, the backbone of which is Dacknet53
...
@@ -17,7 +17,7 @@ The network for detecting vehicles is YOLOv3, the backbone of which is Dacknet53
### 2. Configuration for training
### 2. Configuration for training
PaddleDetection provides users with a configuration file [yolov3_darknet53_270e_coco.yml](https://github.com/PaddlePaddle/PaddleDetection/blob/develop/configs/yolov3/yolov3_darknet53_270e_coco.yml) to train YOLOv3 on the COCO dataset, compared with this file, we modify some parameters as followed to conduct the training for vehicle detection:
PaddleDetection provides users with a configuration file [yolov3_darknet53_270e_coco.yml](https://github.com/PaddlePaddle/PaddleDetection/blob/release/2.4/configs/yolov3/yolov3_darknet53_270e_coco.yml) to train YOLOv3 on the COCO dataset, compared with this file, we modify some parameters as followed to conduct the training for vehicle detection: