提交 715a31b3 编写于 作者: P phlrain

Merge branch 'develop' of https://github.com/PaddlePaddle/Paddle into fix_split

......@@ -118,6 +118,8 @@ paddle.fluid.layers.reduce_mean (ArgSpec(args=['input', 'dim', 'keep_dim', 'name
paddle.fluid.layers.reduce_max (ArgSpec(args=['input', 'dim', 'keep_dim', 'name'], varargs=None, keywords=None, defaults=(None, False, None)), ('document', '66a622db727551761ce4eb73eaa7f6a4'))
paddle.fluid.layers.reduce_min (ArgSpec(args=['input', 'dim', 'keep_dim', 'name'], varargs=None, keywords=None, defaults=(None, False, None)), ('document', 'd50ac552b5d131468ed466d08bb2d38c'))
paddle.fluid.layers.reduce_prod (ArgSpec(args=['input', 'dim', 'keep_dim', 'name'], varargs=None, keywords=None, defaults=(None, False, None)), ('document', 'fcd8301a0ce15f219c7a4bcd0c1e8eca'))
paddle.fluid.layers.reduce_all (ArgSpec(args=['input', 'dim', 'keep_dim', 'name'], varargs=None, keywords=None, defaults=(None, False, None)), ('document', '646ca4d4a2cc16084f59de44b6927eca'))
paddle.fluid.layers.reduce_any (ArgSpec(args=['input', 'dim', 'keep_dim', 'name'], varargs=None, keywords=None, defaults=(None, False, None)), ('document', 'f36661060aeeaf6c6b1331e41b3726fa'))
paddle.fluid.layers.sequence_first_step (ArgSpec(args=['input'], varargs=None, keywords=None, defaults=None), ('document', '2b290d3d77882bfe9bb8d331cac8cdd3'))
paddle.fluid.layers.sequence_last_step (ArgSpec(args=['input'], varargs=None, keywords=None, defaults=None), ('document', 'c16a892f44f7fe71bfa5afc32d3f34ce'))
paddle.fluid.layers.sequence_slice (ArgSpec(args=['input', 'offset', 'length', 'name'], varargs=None, keywords=None, defaults=(None,)), ('document', 'fdcea0e8b5bc7d8d4b1b072c521014e6'))
......@@ -204,6 +206,7 @@ paddle.fluid.layers.gaussian_random_batch_size_like (ArgSpec(args=['input', 'sha
paddle.fluid.layers.sum (ArgSpec(args=['x'], varargs=None, keywords=None, defaults=None), ('document', 'a418e3ccb5e2ac21bd60f5cc221d5860'))
paddle.fluid.layers.slice (ArgSpec(args=['input', 'axes', 'starts', 'ends'], varargs=None, keywords=None, defaults=None), ('document', '01dbb91e7c74cb11336cd531013de51a'))
paddle.fluid.layers.shape (ArgSpec(args=['input'], varargs=None, keywords=None, defaults=None), ('document', '17db0f814eb7bb5a3fac1ca6e60e16d8'))
paddle.fluid.layers.rank (ArgSpec(args=['input'], varargs=None, keywords=None, defaults=None), ('document', 'ee1386c42ecc8f424fe3fb21862fefc2'))
paddle.fluid.layers.logical_and (ArgSpec(args=['x', 'y', 'out', 'name'], varargs=None, keywords=None, defaults=(None, None)), ('document', 'cdcf20c494c92060d10feb9374532f42'))
paddle.fluid.layers.logical_or (ArgSpec(args=['x', 'y', 'out', 'name'], varargs=None, keywords=None, defaults=(None, None)), ('document', '0eae3f726a4afe590757552fa3ced012'))
paddle.fluid.layers.logical_xor (ArgSpec(args=['x', 'y', 'out', 'name'], varargs=None, keywords=None, defaults=(None, None)), ('document', 'b0daaa3fa4a0aa62f9b58c43d959eb25'))
......@@ -272,6 +275,7 @@ paddle.fluid.layers.has_inf (ArgSpec(args=['x'], varargs=None, keywords=None, de
paddle.fluid.layers.has_nan (ArgSpec(args=['x'], varargs=None, keywords=None, defaults=None), ('document', '2e53e83127dbfd86e7098bdfe9a549e8'))
paddle.fluid.layers.isfinite (ArgSpec(args=['x'], varargs=None, keywords=None, defaults=None), ('document', '0a437011c3906079fd8947ed3e52d292'))
paddle.fluid.layers.range (ArgSpec(args=['start', 'end', 'step', 'dtype'], varargs=None, keywords=None, defaults=None), ('document', '2ec937ede953ded2fdff2675883900bb'))
paddle.fluid.layers.linspace (ArgSpec(args=['start', 'stop', 'num', 'dtype'], varargs=None, keywords=None, defaults=None), ('document', '495e21e9a848c2d075a102802fc67756'))
paddle.fluid.layers.While.__init__ (ArgSpec(args=['self', 'cond', 'is_test', 'name'], varargs=None, keywords=None, defaults=(False, None)), ('document', '6adf97f83acf6453d4a6a4b1070f3754'))
paddle.fluid.layers.While.block (ArgSpec(args=['self'], varargs=None, keywords=None, defaults=None), ('document', '6adf97f83acf6453d4a6a4b1070f3754'))
paddle.fluid.layers.Switch.__init__ (ArgSpec(args=['self', 'name'], varargs=None, keywords=None, defaults=(None,)), ('document', '6adf97f83acf6453d4a6a4b1070f3754'))
......
......@@ -31,10 +31,10 @@ namespace paddle {
namespace framework {
namespace ir {
namespace {
void SortHelper(
const std::map<ir::Node *, std::unordered_set<ir::Node *>> &adj_list,
ir::Node *node, std::unordered_set<ir::Node *> *visited,
std::vector<ir::Node *> *ret) {
void SortHelper(const std::map<ir::Node *, std::set<ir::Node *, ir::NodeComp>,
ir::NodeComp> &adj_list,
ir::Node *node, std::unordered_set<ir::Node *> *visited,
std::vector<ir::Node *> *ret) {
visited->insert(node);
for (auto adj : adj_list.at(node)) {
......@@ -50,7 +50,8 @@ void SortHelper(
bool HasCircleHelper(
ir::Node *node,
const std::map<ir::Node *, std::unordered_set<ir::Node *>> &adj_list,
const std::map<ir::Node *, std::set<ir::Node *, ir::NodeComp>, ir::NodeComp>
&adj_list,
std::unordered_set<ir::Node *> *visited,
std::unordered_set<ir::Node *> *in_trace,
std::vector<std::vector<ir::Node *>> *circles) {
......@@ -84,7 +85,8 @@ bool HasCircleHelper(
}
bool HasCircleInternal(
const std::map<ir::Node *, std::unordered_set<ir::Node *>> &adj_list,
const std::map<ir::Node *, std::set<ir::Node *, ir::NodeComp>, ir::NodeComp>
&adj_list,
std::vector<std::vector<ir::Node *>> *circles) {
std::unordered_set<ir::Node *> visited;
std::unordered_set<ir::Node *> in_trace;
......@@ -107,8 +109,8 @@ bool FindCircleSubGraph(const Graph &graph,
}
std::vector<ir::Node *> TopologySortOperations(const Graph &graph) {
std::map<ir::Node *, std::unordered_set<ir::Node *>> adj_list =
BuildOperationAdjList(graph);
std::map<ir::Node *, std::set<ir::Node *, ir::NodeComp>, ir::NodeComp>
adj_list = BuildOperationAdjList(graph);
PADDLE_ENFORCE(!HasCircleInternal(adj_list, nullptr));
std::unordered_set<ir::Node *> visited;
std::vector<ir::Node *> ret;
......@@ -117,34 +119,30 @@ std::vector<ir::Node *> TopologySortOperations(const Graph &graph) {
SortHelper(adj_list, adj.first, &visited, &ret);
}
}
return ret;
}
// Build operator inlink edge table.
std::map<ir::Node *, std::unordered_set<ir::Node *>> BuildOperationAdjList(
const Graph &graph) {
std::map<ir::Node *, std::unordered_set<ir::Node *>> adj_list;
std::map<ir::Node *, std::set<ir::Node *, ir::NodeComp>, ir::NodeComp>
BuildOperationAdjList(const Graph &graph) {
std::map<ir::Node *, std::set<ir::Node *, ir::NodeComp>, ir::NodeComp>
adj_list;
for (auto &n : graph.Nodes()) {
if (!n->IsOp()) continue;
if (adj_list.find(n) == adj_list.end()) {
adj_list[n] = std::unordered_set<ir::Node *>();
adj_list[n] = std::set<ir::Node *, ir::NodeComp>();
}
std::vector<ir::Node *> nodes;
for (auto &var : n->inputs) {
for (auto &adj_n : var->inputs) {
PADDLE_ENFORCE(adj_n->NodeType() == ir::Node::Type::kOperation);
VLOG(4) << "adj " << adj_n->Name() << reinterpret_cast<void *>(adj_n)
<< " -> " << n->Name() << reinterpret_cast<void *>(n)
<< " via " << var->Name() << reinterpret_cast<void *>(var);
nodes.push_back(adj_n);
adj_list[n].insert(adj_n);
}
}
std::sort(nodes.begin(), nodes.end(), [](ir::Node *node1, ir::Node *node2) {
return node1->id() > node2->id();
});
adj_list[n].insert(std::make_move_iterator(nodes.begin()),
std::make_move_iterator(nodes.end()));
}
return adj_list;
}
......
......@@ -16,6 +16,7 @@ limitations under the License. */
#include <map>
#include <memory>
#include <set>
#include <vector>
#include "paddle/fluid/framework/ir/graph.h"
......@@ -25,6 +26,13 @@ namespace paddle {
namespace framework {
namespace ir {
// Compare nodes via node id.
struct NodeComp {
bool operator()(ir::Node *const &node1, ir::Node *const &node2) const {
return node1->id() < node2->id();
}
};
// Test if the graph contains circle.
bool HasCircle(const Graph &graph);
......@@ -57,8 +65,8 @@ std::vector<Node *> TopologyVarientSort(const Graph &graph, SortKind sort_kind);
void CleanIndividualNodes(Graph *graph);
// Build an adjacency list of operations for the `graph`.
std::map<ir::Node *, std::unordered_set<ir::Node *>> BuildOperationAdjList(
const Graph &graph);
std::map<ir::Node *, std::set<ir::Node *, ir::NodeComp>, ir::NodeComp>
BuildOperationAdjList(const Graph &graph);
template <typename T>
std::vector<T *> FilterByNodeWrapper(const Graph &graph) {
......
......@@ -241,6 +241,7 @@ OpDesc::OpDesc(const std::string &type, const VariableNameMap &inputs,
outputs_ = outputs;
attrs_ = attrs;
need_update_ = true;
block_ = nullptr;
}
OpDesc::OpDesc(const OpDesc &other, BlockDesc *block) {
......
......@@ -259,6 +259,9 @@ bool AnalysisPredictor::SetFeed(const std::vector<PaddleTensor> &inputs,
return false;
}
PADDLE_ENFORCE_NOT_NULL(input_ptr);
PADDLE_ENFORCE_NOT_NULL(inputs[i].data.data());
if (platform::is_cpu_place(place_)) {
// TODO(panyx0718): Init LoDTensor from existing memcpy to save a copy.
std::memcpy(static_cast<void *>(input_ptr), inputs[i].data.data(),
......
......@@ -54,6 +54,7 @@ PaddleBuf &PaddleBuf::operator=(const PaddleBuf &other) {
memory_owned_ = other.memory_owned_;
} else {
Resize(other.length());
PADDLE_ENFORCE(!(other.length() > 0 && other.data() == nullptr));
memcpy(data_, other.data(), other.length());
length_ = other.length();
memory_owned_ = true;
......
......@@ -169,6 +169,7 @@ std::unique_ptr<PaddlePredictor> NativePaddlePredictor::Clone() {
std::unique_ptr<PaddlePredictor> cls(new NativePaddlePredictor(config_));
// Hot fix the bug that result diff in multi-thread.
// TODO(Superjomn) re-implement a real clone here.
PADDLE_ENFORCE_NOT_NULL(dynamic_cast<NativePaddlePredictor *>(cls.get()));
if (!dynamic_cast<NativePaddlePredictor *>(cls.get())->Init(nullptr)) {
LOG(ERROR) << "fail to call Init";
return nullptr;
......@@ -210,6 +211,8 @@ bool NativePaddlePredictor::SetFeed(const std::vector<PaddleTensor> &inputs,
return false;
}
PADDLE_ENFORCE_NOT_NULL(input_ptr);
PADDLE_ENFORCE_NOT_NULL(inputs[i].data.data());
if (platform::is_cpu_place(place_)) {
// TODO(panyx0718): Init LoDTensor from existing memcpy to save a copy.
std::memcpy(static_cast<void *>(input_ptr), inputs[i].data.data(),
......@@ -316,6 +319,8 @@ std::unique_ptr<PaddlePredictor> CreatePaddlePredictor<
}
std::unique_ptr<PaddlePredictor> predictor(new NativePaddlePredictor(config));
PADDLE_ENFORCE_NOT_NULL(
dynamic_cast<NativePaddlePredictor *>(predictor.get()));
if (!dynamic_cast<NativePaddlePredictor *>(predictor.get())->Init(nullptr)) {
return nullptr;
}
......
......@@ -47,6 +47,7 @@ struct DataRecord {
num_lines++;
std::vector<std::string> data;
split(line, '\t', &data);
PADDLE_ENFORCE(data.size() >= 4);
// load title1 data
std::vector<int64_t> title1_data;
split_to_int64(data[0], ' ', &title1_data);
......
......@@ -214,28 +214,23 @@ TEST(Analyzer_Transformer, fuse_statis) {
}
// Compare result of NativeConfig and AnalysisConfig
// void compare(bool use_mkldnn = false) {
// AnalysisConfig cfg;
// SetConfig(&cfg);
// if (use_mkldnn) {
// cfg.EnableMKLDNN();
// }
//
// std::vector<std::vector<PaddleTensor>> input_slots_all;
// SetInput(&input_slots_all);
// CompareNativeAndAnalysis(
// reinterpret_cast<const PaddlePredictor::Config *>(&cfg),
// input_slots_all);
// }
// TODO(yihuaxu):
// Disable compare and compare_mkldnn temporary, see
// https://github.com/paddlePaddle/Paddle/issues/16316 for details.
// TEST(Analyzer_Transformer, compare) { compare(); }
// #ifdef PADDLE_WITH_MKLDNN
// TEST(Analyzer_Transformer, compare_mkldnn) { compare(true /* use_mkldnn */);
// }
// #endif
void compare(bool use_mkldnn = false) {
AnalysisConfig cfg;
SetConfig(&cfg);
if (use_mkldnn) {
cfg.EnableMKLDNN();
}
std::vector<std::vector<PaddleTensor>> input_slots_all;
SetInput(&input_slots_all);
CompareNativeAndAnalysis(
reinterpret_cast<const PaddlePredictor::Config *>(&cfg), input_slots_all);
}
TEST(Analyzer_Transformer, compare) { compare(); }
#ifdef PADDLE_WITH_MKLDNN
TEST(Analyzer_Transformer, compare_mkldnn) { compare(true /* use_mkldnn */); }
#endif
} // namespace inference
} // namespace paddle
......@@ -29,6 +29,8 @@ pool3d
prelu
quantize
rank_loss
reduce_all
reduce_any
reduce_max
reduce_mean
reduce_min
......
......@@ -24,6 +24,7 @@
**/
#include "paddle/fluid/operators/detection/gpc.h"
#include "paddle/fluid/platform/enforce.h"
namespace gpc {
......@@ -689,6 +690,7 @@ static bbox *create_contour_bboxes(gpc_polygon *p) {
gpc_malloc<bbox>(box, p->num_contours * sizeof(bbox),
const_cast<char *>("Bounding box creation"));
PADDLE_ENFORCE_NOT_NULL(box);
/* Construct contour bounding boxes */
for (c = 0; c < p->num_contours; c++) {
......@@ -852,6 +854,7 @@ void gpc_add_contour(gpc_polygon *p, gpc_vertex_list *new_contour, int hole) {
/* Create an extended hole array */
gpc_malloc<int>(extended_hole, (p->num_contours + 1) * sizeof(int),
const_cast<char *>("contour hole addition"));
PADDLE_ENFORCE_NOT_NULL(extended_hole);
/* Create an extended contour array */
gpc_malloc<gpc_vertex_list>(extended_contour,
......@@ -969,6 +972,7 @@ void gpc_polygon_clip(gpc_op op, gpc_polygon *subj, gpc_polygon *clip,
/* Build scanbeam table from scanbeam tree */
gpc_malloc<double>(sbt, sbt_entries * sizeof(double),
const_cast<char *>("sbt creation"));
PADDLE_ENFORCE_NOT_NULL(sbt);
build_sbt(&scanbeam, sbt, sbtree);
scanbeam = 0;
free_sbtree(&sbtree);
......@@ -1604,6 +1608,7 @@ void gpc_tristrip_clip(gpc_op op, gpc_polygon *subj, gpc_polygon *clip,
/* Build scanbeam table from scanbeam tree */
gpc_malloc<double>(sbt, sbt_entries * sizeof(double),
const_cast<char *>("sbt creation"));
PADDLE_ENFORCE_NOT_NULL(sbt);
build_sbt(&scanbeam, sbt, sbtree);
scanbeam = 0;
free_sbtree(&sbtree);
......
/* Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/operators/linspace_op.h"
namespace paddle {
namespace operators {
class LinspaceOp : public framework::OperatorWithKernel {
public:
using framework::OperatorWithKernel::OperatorWithKernel;
void InferShape(framework::InferShapeContext* ctx) const override {
PADDLE_ENFORCE(ctx->HasInput("Start"),
"Input(Start) of LinspaceOp should not be null.");
PADDLE_ENFORCE(ctx->HasInput("Stop"),
"Input(Stop) of LinspaceOp should not be null.");
PADDLE_ENFORCE(ctx->HasInput("Num"),
"Input(Num) of LinspaceOp should not be null.");
PADDLE_ENFORCE(ctx->HasOutput("Out"),
"Output(OUt) of LinspaceOp should not be null.");
auto s_dims = ctx->GetInputDim("Start");
PADDLE_ENFORCE((s_dims.size() == 1) && (s_dims[0] == 1),
"The shape of Input(Start) should be [1].");
auto e_dims = ctx->GetInputDim("Stop");
PADDLE_ENFORCE((e_dims.size() == 1) && (e_dims[0] == 1),
"The shape of Input(Stop) should be [1].");
auto step_dims = ctx->GetInputDim("Num");
PADDLE_ENFORCE((step_dims.size() == 1) && (step_dims[0] == 1),
"The shape of Input(Num) should be [1].");
ctx->SetOutputDim("Out", {-1});
}
protected:
framework::OpKernelType GetExpectedKernelType(
const framework::ExecutionContext& ctx) const override {
framework::LibraryType library_{framework::LibraryType::kPlain};
framework::DataLayout layout_ = framework::DataLayout::kAnyLayout;
return framework::OpKernelType(
ctx.Input<framework::Tensor>("Start")->type(), ctx.device_context(),
layout_, library_);
}
};
class LinspaceOpMaker : public framework::OpProtoAndCheckerMaker {
public:
void Make() override {
AddInput("Start",
"First entry in the sequence. It is a tensor of shape [1], should "
"be of type float32 or float64.");
AddInput("Stop",
"Last entry in the sequence. It is a tensor of shape [1], should "
"be of type float32 or float64.");
AddInput("Num",
"Number of entry in the sequence. It is a tensor of shape [1], "
"should be of type int32.");
AddOutput("Out", "A sequence of numbers.");
AddComment(R"DOC(
Return fixed number of evenly spaced values within a given interval. First entry is start, and last entry is stop. In the case when Num is 1, only Start is returned. Like linspace function of numpy.
)DOC");
}
};
} // namespace operators
} // namespace paddle
namespace ops = paddle::operators;
REGISTER_OP_WITHOUT_GRADIENT(linspace, ops::LinspaceOp, ops::LinspaceOpMaker);
REGISTER_OP_CPU_KERNEL(linspace, ops::CPULinspaceKernel<float>,
ops::CPULinspaceKernel<double>);
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/operators/linspace_op.h"
#include "paddle/fluid/platform/cuda_primitives.h"
namespace paddle {
namespace operators {
#define CUDA_1D_KERNEL_LOOP(i, n) \
for (int i = blockIdx.x * blockDim.x + threadIdx.x; i < (n); \
i += blockDim.x * gridDim.x)
template <typename T>
__global__ void LinspaceKernel(T start, T step, int64_t size, T* out) {
CUDA_1D_KERNEL_LOOP(index, size) { out[index] = start + step * index; }
}
template <typename T>
__global__ void LinspaceSpecialKernel(T start, T* out) {
out[0] = start;
}
template <typename T>
class CUDALinspaceKernel : public framework::OpKernel<T> {
public:
void Compute(const framework::ExecutionContext& context) const override {
auto* start_t = context.Input<framework::Tensor>("Start");
auto* stop_t = context.Input<framework::Tensor>("Stop");
auto* num_t = context.Input<framework::Tensor>("Num");
auto* out = context.Output<framework::Tensor>("Out");
framework::Tensor n;
framework::TensorCopy(*start_t, platform::CPUPlace(), &n);
T start = n.data<T>()[0];
framework::TensorCopy(*stop_t, platform::CPUPlace(), &n);
T stop = n.data<T>()[0];
framework::TensorCopy(*num_t, platform::CPUPlace(), &n);
int32_t num = n.data<int32_t>()[0];
PADDLE_ENFORCE(num > 0, "The num of linspace op should be larger than 0.");
out->Resize(framework::make_ddim({num}));
T* out_data = out->mutable_data<T>(context.GetPlace());
T step = 0;
if (num != 1) {
step = (stop - start) / (num - 1);
}
auto stream = context.cuda_device_context().stream();
int block = 512;
int grid = (num + block - 1) / block;
LinspaceKernel<T><<<grid, block, 0, stream>>>(start, step, num, out_data);
}
};
} // namespace operators
} // namespace paddle
namespace ops = paddle::operators;
REGISTER_OP_CUDA_KERNEL(linspace, ops::CUDALinspaceKernel<float>,
ops::CUDALinspaceKernel<double>);
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include <functional>
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/operators/math/math_function.h"
namespace paddle {
namespace operators {
template <typename T>
class CPULinspaceKernel : public framework::OpKernel<T> {
public:
void Compute(const framework::ExecutionContext& context) const override {
T start = context.Input<framework::Tensor>("Start")->data<T>()[0];
T stop = context.Input<framework::Tensor>("Stop")->data<T>()[0];
int32_t num = context.Input<framework::Tensor>("Num")->data<int32_t>()[0];
auto* out = context.Output<framework::Tensor>("Out");
PADDLE_ENFORCE(num > 0, "The num of linspace op should be larger than 0.");
out->Resize(framework::make_ddim({num}));
T* out_data = out->mutable_data<T>(context.GetPlace());
if (num > 1) {
T step = (stop - start) / (num - 1);
T value = start;
for (int i = 0; i < num; ++i) {
out_data[i] = value;
value += step;
}
} else {
out_data[0] = start;
}
}
};
} // namespace operators
} // namespace paddle
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/fluid/operators/reduce_ops/reduce_all_op.h"
REGISTER_REDUCE_OP(reduce_all);
REGISTER_OP_CPU_KERNEL(reduce_all,
ops::ReduceKernel<paddle::platform::CPUDeviceContext,
bool, ops::AllFunctor>);
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/fluid/operators/reduce_ops/reduce_all_op.h"
REGISTER_OP_CUDA_KERNEL(reduce_all,
ops::ReduceKernel<paddle::platform::CUDADeviceContext,
bool, ops::AllFunctor>);
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include "paddle/fluid/operators/reduce_ops/reduce_op.h"
namespace paddle {
namespace operators {
struct AllFunctor {
template <typename DeviceContext, typename X, typename Y, typename Dim>
void operator()(const DeviceContext& place, X* x, Y* y, const Dim& dim) {
y->device(place) = x->all(dim);
}
};
} // namespace operators
} // namespace paddle
// Copyright (c) 2018 PaddlePaddle Authors. Any Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/fluid/operators/reduce_ops/reduce_any_op.h"
REGISTER_REDUCE_OP(reduce_any);
REGISTER_OP_CPU_KERNEL(reduce_any,
ops::ReduceKernel<paddle::platform::CPUDeviceContext,
bool, ops::AnyFunctor>);
// Copyright (c) 2018 PaddlePaddle Authors. Any Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/fluid/operators/reduce_ops/reduce_any_op.h"
REGISTER_OP_CUDA_KERNEL(reduce_any,
ops::ReduceKernel<paddle::platform::CUDADeviceContext,
bool, ops::AnyFunctor>);
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include "paddle/fluid/operators/reduce_ops/reduce_op.h"
namespace paddle {
namespace operators {
struct AnyFunctor {
template <typename DeviceContext, typename X, typename Y, typename Dim>
void operator()(const DeviceContext& place, X* x, Y* y, const Dim& dim) {
y->device(place) = x->any(dim);
}
};
} // namespace operators
} // namespace paddle
......@@ -77,6 +77,9 @@ class SquaredL2DistanceGradKernel : public framework::OpKernel<T> {
auto* x_g = context.Output<Tensor>(framework::GradVarName("X"));
auto* y_g = context.Output<Tensor>(framework::GradVarName("Y"));
PADDLE_ENFORCE_NOT_NULL(x_g);
PADDLE_ENFORCE_NOT_NULL(y_g);
auto sub_result = EigenMatrix<T>::From(*in0);
auto out_grad = EigenMatrix<T>::From(*in1);
......@@ -92,31 +95,28 @@ class SquaredL2DistanceGradKernel : public framework::OpKernel<T> {
// propagate back to input
auto& eigen_place =
*context.template device_context<DeviceContext>().eigen_device();
if (x_g) {
x_g->mutable_data<T>(context.GetPlace());
// eigen matrix
auto x_grad =
EigenMatrix<T>::From(*x_g, framework::make_ddim({x_dims[0], cols}));
// dimensions are same with subResult
x_grad.device(eigen_place) = grad_mat;
}
if (y_g) {
y_g->mutable_data<T>(context.GetPlace());
PADDLE_ENFORCE_GE(sub_result.dimensions()[0], y_dims[0],
"First dimension of gradient must be greater or "
"equal than first dimension of target.");
if (sub_result.dimensions()[0] == y_dims[0]) {
auto y_grad =
EigenMatrix<T>::From(*y_g, framework::make_ddim({y_dims[0], cols}));
y_grad.device(eigen_place) = -1 * grad_mat;
} else {
auto col_sum_res = -1 * (grad_mat.sum(Eigen::array<int, 1>({{0}})));
auto y_grad = EigenVector<T>::Flatten(*y_g);
y_grad.device(eigen_place) = col_sum_res;
}
x_g->mutable_data<T>(context.GetPlace());
// eigen matrix
auto x_grad =
EigenMatrix<T>::From(*x_g, framework::make_ddim({x_dims[0], cols}));
// dimensions are same with subResult
x_grad.device(eigen_place) = grad_mat;
y_g->mutable_data<T>(context.GetPlace());
PADDLE_ENFORCE_GE(sub_result.dimensions()[0], y_dims[0],
"First dimension of gradient must be greater or "
"equal than first dimension of target.");
if (sub_result.dimensions()[0] == y_dims[0]) {
auto y_grad =
EigenMatrix<T>::From(*y_g, framework::make_ddim({y_dims[0], cols}));
y_grad.device(eigen_place) = -1 * grad_mat;
} else {
auto col_sum_res = -1 * (grad_mat.sum(Eigen::array<int, 1>({{0}})));
auto y_grad = EigenVector<T>::Flatten(*y_g);
y_grad.device(eigen_place) = col_sum_res;
}
}
};
......
......@@ -73,6 +73,8 @@ __all__ = [
'reduce_max',
'reduce_min',
'reduce_prod',
'reduce_all',
'reduce_any',
'sequence_first_step',
'sequence_last_step',
'sequence_slice',
......@@ -159,6 +161,7 @@ __all__ = [
'sum',
'slice',
'shape',
'rank',
'logical_and',
'logical_or',
'logical_xor',
......@@ -4738,6 +4741,106 @@ def reduce_prod(input, dim=None, keep_dim=False, name=None):
return out
def reduce_all(input, dim=None, keep_dim=False, name=None):
"""
Computes the ``logical and`` of tensor elements over the given dimension.
Args:
input (Variable): The input variable which is a Tensor or LoDTensor.
dim (list|int|None): The dimension along which the logical and is computed.
If :attr:`None`, compute the logical and over all elements of
:attr:`input` and return a Tensor variable with a single element,
otherwise must be in the range :math:`[-rank(input), rank(input))`.
If :math:`dim[i] < 0`, the dimension to reduce is :math:`rank + dim[i]`.
keep_dim (bool): Whether to reserve the reduced dimension in the
output Tensor. The result tensor will have one fewer dimension
than the :attr:`input` unless :attr:`keep_dim` is true.
name(str|None): A name for this layer(optional). If set None, the layer
will be named automatically.
Returns:
Variable: The reduced Tensor variable.
Examples:
.. code-block:: python
# x is a bool Tensor variable with following elements:
# [[True, False]
# [True, True]]
# Each example is followed by the correspending output tensor.
fluid.layers.reduce_all(x) # False
fluid.layers.reduce_all(x, dim=0) # [True, False]
fluid.layers.reduce_all(x, dim=-1) # [False, True]
fluid.layers.reduce_all(x, dim=1,
keep_dim=True) # [[False], [True]]
"""
helper = LayerHelper('reduce_all', **locals())
out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
if dim is not None and not isinstance(dim, list):
dim = [dim]
helper.append_op(
type='reduce_all',
inputs={'X': input},
outputs={'Out': out},
attrs={
'dim': dim if dim != None else [0],
'keep_dim': keep_dim,
'reduce_all': True if dim == None else False
})
return out
def reduce_any(input, dim=None, keep_dim=False, name=None):
"""
Computes the ``logical or`` of tensor elements over the given dimension.
Args:
input (Variable): The input variable which is a Tensor or LoDTensor.
dim (list|int|None): The dimension along which the logical or is computed.
If :attr:`None`, compute the logical or over all elements of
:attr:`input` and return a Tensor variable with a single element,
otherwise must be in the range :math:`[-rank(input), rank(input))`.
If :math:`dim[i] < 0`, the dimension to reduce is :math:`rank + dim[i]`.
keep_dim (bool): Whether to reserve the reduced dimension in the
output Tensor. The result tensor will have one fewer dimension
than the :attr:`input` unless :attr:`keep_dim` is true.
name(str|None): A name for this layer(optional). If set None, the layer
will be named automatically.
Returns:
Variable: The reduced Tensor variable.
Examples:
.. code-block:: python
# x is a bool Tensor variable with following elements:
# [[True, False]
# [False, False]]
# Each example is followed by the correspending output tensor.
fluid.layers.reduce_any(x) # True
fluid.layers.reduce_any(x, dim=0) # [True, False]
fluid.layers.reduce_any(x, dim=-1) # [True, False]
fluid.layers.reduce_any(x, dim=1,
keep_dim=True) # [[True], [False]]
"""
helper = LayerHelper('reduce_any', **locals())
out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
if dim is not None and not isinstance(dim, list):
dim = [dim]
helper.append_op(
type='reduce_any',
inputs={'X': input},
outputs={'Out': out},
attrs={
'dim': dim if dim != None else [0],
'keep_dim': keep_dim,
'reduce_all': True if dim == None else False
})
return out
def split(input, num_or_sections, dim=-1, name=None):
"""
Split the input tensor into multiple sub-tensors.
......@@ -9237,6 +9340,32 @@ def shape(input):
return out
def rank(input):
"""
**Rank Layer**
Returns the number of dimensions for a tensor, which is a 0-D int32 Tensor.
Args:
input (Variable): The input variable.
Returns:
Variable: The rank of the input variable.
Examples:
.. code-block:: python
input = layers.data(
name="input", shape=[3, 100, 100], dtype="float32")
rank = layers.rank(input) # 4
"""
ndims = len(input.shape)
out = assign(np.array(ndims, 'int32'))
return out
def _elementwise_op(helper):
op_type = helper.layer_type
x = helper.kwargs.get('x', None)
......
......@@ -24,26 +24,11 @@ from .layer_function_generator import templatedoc
import numpy
__all__ = [
'create_tensor',
'create_parameter',
'create_global_var',
'cast',
'tensor_array_to_tensor',
'concat',
'sums',
'assign',
'fill_constant_batch_size_like',
'fill_constant',
'argmin',
'argmax',
'argsort',
'ones',
'zeros',
'reverse',
'has_inf',
'has_nan',
'isfinite',
'range',
'create_tensor', 'create_parameter', 'create_global_var', 'cast',
'tensor_array_to_tensor', 'concat', 'sums', 'assign',
'fill_constant_batch_size_like', 'fill_constant', 'argmin', 'argmax',
'argsort', 'ones', 'zeros', 'reverse', 'has_inf', 'has_nan', 'isfinite',
'range', 'linspace'
]
......@@ -826,3 +811,45 @@ def range(start, end, step, dtype):
'Step': step},
outputs={'Out': [out]})
return out
def linspace(start, stop, num, dtype):
"""
Return fixed number of evenly spaced values within a given interval.
First entry is start, and last entry is stop. In the case when Num is 1, only Start is returned. Like linspace function of numpy.
Args:
start(float|Variable): First entry in the sequence. It is a float scalar, or a tensor of shape [1] with type 'float32'|'float64'.
stop(float|Variable): Last entry in the sequence. It is a float scalar, or a tensor of shape [1] with type 'float32'|'float64'.
num(int|Variable): Number of entry in the sequence. It is an int scalar, or a tensor of shape [1] with type int32.
dtype(string): 'float32'|'float64', the data type of the output tensor.
Returns:
Variable: The tensor variable storing a 1-D tensor.
Examples:
.. code-block:: python
data = fluid.layers.linspace(0, 10, 5, 'float32') # [0.0, 2.5, 5.0, 7.5, 10.0]
data = fluid.layers.linspace(0, 10, 1, 'float32') # [0.0]
"""
helper = LayerHelper("linspace", **locals())
if not isinstance(start, Variable):
start = fill_constant([1], dtype, start)
if not isinstance(stop, Variable):
stop = fill_constant([1], dtype, stop)
if not isinstance(num, Variable):
num = fill_constant([1], 'int32', num)
out = helper.create_variable_for_type_inference(dtype=start.dtype)
helper.append_op(
type='linspace',
inputs={'Start': start,
'Stop': stop,
'Num': num},
outputs={'Out': [out]})
return out
......@@ -1925,6 +1925,13 @@ class TestBook(LayerTest):
out = layers.flatten(x, axis=1, name="flatten")
return (out)
def test_linspace(self):
program = Program()
with program_guard(program):
out = layers.linspace(20, 10, 5, 'float64')
self.assertIsNotNone(out)
print(str(program))
if __name__ == '__main__':
unittest.main()
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import print_function
import unittest
import numpy as np
from op_test import OpTest
class TestLinspaceOpCommonCase(OpTest):
def setUp(self):
self.op_type = "linspace"
dtype = 'float32'
self.inputs = {
'Start': np.array([0]).astype(dtype),
'Stop': np.array([10]).astype(dtype),
'Num': np.array([11]).astype('int32')
}
self.outputs = {'Out': np.arange(0, 11).astype(dtype)}
def test_check_output(self):
self.check_output()
class TestLinspaceOpReverseCase(OpTest):
def setUp(self):
self.op_type = "linspace"
dtype = 'float32'
self.inputs = {
'Start': np.array([10]).astype(dtype),
'Stop': np.array([0]).astype(dtype),
'Num': np.array([11]).astype('int32')
}
self.outputs = {'Out': np.arange(10, -1, -1).astype(dtype)}
def test_check_output(self):
self.check_output()
class TestLinspaceOpNumOneCase(OpTest):
def setUp(self):
self.op_type = "linspace"
dtype = 'float32'
self.inputs = {
'Start': np.array([10]).astype(dtype),
'Stop': np.array([0]).astype(dtype),
'Num': np.array([1]).astype('int32')
}
self.outputs = {'Out': np.array(10, dtype=dtype)}
def test_check_output(self):
self.check_output()
if __name__ == "__main__":
unittest.main()
......@@ -91,6 +91,78 @@ class TestProdOp(OpTest):
self.check_grad(['X'], 'Out')
class TestAllOp(OpTest):
def setUp(self):
self.op_type = "reduce_all"
self.inputs = {'X': np.random.randint(0, 2, (5, 6, 10)).astype("bool")}
self.outputs = {'Out': self.inputs['X'].all()}
self.attrs = {'reduce_all': True}
def test_check_output(self):
self.check_output()
class TestAllOpWithDim(OpTest):
def setUp(self):
self.op_type = "reduce_all"
self.inputs = {'X': np.random.randint(0, 2, (5, 6, 10)).astype("bool")}
self.attrs = {'dim': [1]}
self.outputs = {'Out': self.inputs['X'].all(axis=1)}
def test_check_output(self):
self.check_output()
class TestAllOpWithKeepDim(OpTest):
def setUp(self):
self.op_type = "reduce_all"
self.inputs = {'X': np.random.randint(0, 2, (5, 6, 10)).astype("bool")}
self.attrs = {'dim': [1], 'keep_dim': True}
self.outputs = {
'Out': np.expand_dims(
self.inputs['X'].all(axis=1), axis=1)
}
def test_check_output(self):
self.check_output()
class TestAnyOp(OpTest):
def setUp(self):
self.op_type = "reduce_any"
self.inputs = {'X': np.random.randint(0, 2, (5, 6, 10)).astype("bool")}
self.outputs = {'Out': self.inputs['X'].any()}
self.attrs = {'reduce_all': True}
def test_check_output(self):
self.check_output()
class TestAnyOpWithDim(OpTest):
def setUp(self):
self.op_type = "reduce_any"
self.inputs = {'X': np.random.randint(0, 2, (5, 6, 10)).astype("bool")}
self.attrs = {'dim': [1]}
self.outputs = {'Out': self.inputs['X'].any(axis=1)}
def test_check_output(self):
self.check_output()
class TestAnyOpWithKeepDim(OpTest):
def setUp(self):
self.op_type = "reduce_any"
self.inputs = {'X': np.random.randint(0, 2, (5, 6, 10)).astype("bool")}
self.attrs = {'dim': [1], 'keep_dim': True}
self.outputs = {
'Out': np.expand_dims(
self.inputs['X'].any(axis=1), axis=1)
}
def test_check_output(self):
self.check_output()
class Test1DReduce(OpTest):
def setUp(self):
self.op_type = "reduce_sum"
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册