Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleDetection
提交
70fecee0
P
PaddleDetection
项目概览
PaddlePaddle
/
PaddleDetection
大约 1 年 前同步成功
通知
694
Star
11112
Fork
2696
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
184
列表
看板
标记
里程碑
合并请求
40
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
184
Issue
184
列表
看板
标记
里程碑
合并请求
40
合并请求
40
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
体验新版 GitCode,发现更多精彩内容 >>
提交
70fecee0
编写于
11月 08, 2016
作者:
W
wangyang59
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
add unittest for Matrix and Vector in API
上级
f22573bd
变更
4
隐藏空白更改
内联
并排
Showing
4 changed file
with
71 addition
and
10 deletion
+71
-10
paddle/api/PaddleAPI.h
paddle/api/PaddleAPI.h
+3
-0
paddle/api/Vector.cpp
paddle/api/Vector.cpp
+15
-0
paddle/api/test/testMatrix.py
paddle/api/test/testMatrix.py
+11
-3
paddle/api/test/testVector.py
paddle/api/test/testVector.py
+42
-7
未找到文件。
paddle/api/PaddleAPI.h
浏览文件 @
70fecee0
...
@@ -272,6 +272,9 @@ public:
...
@@ -272,6 +272,9 @@ public:
/// Return is GPU vector or not.
/// Return is GPU vector or not.
bool
isGpu
()
const
;
bool
isGpu
()
const
;
/// Return a list of float, the memory is alloced and copied.
FloatArray
getData
()
const
;
/// __len__ in python
/// __len__ in python
size_t
getSize
()
const
;
size_t
getSize
()
const
;
...
...
paddle/api/Vector.cpp
浏览文件 @
70fecee0
...
@@ -267,6 +267,21 @@ void Vector::copyFromNumpyArray(float* data, int dim) {
...
@@ -267,6 +267,21 @@ void Vector::copyFromNumpyArray(float* data, int dim) {
m
->
vec
->
copyFrom
(
data
,
dim
);
m
->
vec
->
copyFrom
(
data
,
dim
);
}
}
FloatArray
Vector
::
getData
()
const
{
if
(
this
->
isGpu
())
{
float
*
src
=
m
->
vec
->
getData
();
size_t
len
=
m
->
vec
->
getSize
();
float
*
dest
=
new
float
[
len
];
hl_memcpy_device2host
(
dest
,
src
,
len
*
sizeof
(
float
));
FloatArray
ret_val
(
dest
,
len
);
ret_val
.
needFree
=
true
;
return
ret_val
;
}
else
{
FloatArray
ret_val
(
m
->
vec
->
getData
(),
m
->
vec
->
getSize
());
return
ret_val
;
}
}
bool
Vector
::
isGpu
()
const
{
bool
Vector
::
isGpu
()
const
{
return
std
::
dynamic_pointer_cast
<
paddle
::
GpuVector
>
(
m
->
vec
)
!=
nullptr
;
return
std
::
dynamic_pointer_cast
<
paddle
::
GpuVector
>
(
m
->
vec
)
!=
nullptr
;
}
}
...
...
paddle/api/test/testMatrix.py
浏览文件 @
70fecee0
...
@@ -42,7 +42,7 @@ class TestMatrix(unittest.TestCase):
...
@@ -42,7 +42,7 @@ class TestMatrix(unittest.TestCase):
self
.
assertEqual
(
m
.
getSparseRowCols
(
2
),
[])
self
.
assertEqual
(
m
.
getSparseRowCols
(
2
),
[])
def
test_sparse_value
(
self
):
def
test_sparse_value
(
self
):
m
=
swig_paddle
.
Matrix
.
createSparse
(
3
,
3
,
6
,
False
)
m
=
swig_paddle
.
Matrix
.
createSparse
(
3
,
3
,
6
,
False
,
False
,
False
)
self
.
assertIsNotNone
(
m
)
self
.
assertIsNotNone
(
m
)
m
.
sparseCopyFrom
([
0
,
2
,
3
,
3
],
[
0
,
1
,
2
],
[
7.3
,
4.2
,
3.2
])
m
.
sparseCopyFrom
([
0
,
2
,
3
,
3
],
[
0
,
1
,
2
],
[
7.3
,
4.2
,
3.2
])
...
@@ -66,7 +66,7 @@ class TestMatrix(unittest.TestCase):
...
@@ -66,7 +66,7 @@ class TestMatrix(unittest.TestCase):
self
.
assertIsNotNone
(
m
)
self
.
assertIsNotNone
(
m
)
self
.
assertTrue
(
abs
(
m
.
get
(
1
,
1
)
-
0.5
)
<
1e-5
)
self
.
assertTrue
(
abs
(
m
.
get
(
1
,
1
)
-
0.5
)
<
1e-5
)
def
test_numpy
(
self
):
def
test_numpy
Cpu
(
self
):
numpy_mat
=
np
.
matrix
([[
1
,
2
],
[
3
,
4
],
[
5
,
6
]],
dtype
=
"float32"
)
numpy_mat
=
np
.
matrix
([[
1
,
2
],
[
3
,
4
],
[
5
,
6
]],
dtype
=
"float32"
)
m
=
swig_paddle
.
Matrix
.
createCpuDenseFromNumpy
(
numpy_mat
)
m
=
swig_paddle
.
Matrix
.
createCpuDenseFromNumpy
(
numpy_mat
)
self
.
assertEqual
(
self
.
assertEqual
(
...
@@ -100,8 +100,16 @@ class TestMatrix(unittest.TestCase):
...
@@ -100,8 +100,16 @@ class TestMatrix(unittest.TestCase):
for
a
,
e
in
zip
(
gpu_m
.
getData
(),
[
1.0
,
3.23
,
3.0
,
4.0
,
5.0
,
6.0
]):
for
a
,
e
in
zip
(
gpu_m
.
getData
(),
[
1.0
,
3.23
,
3.0
,
4.0
,
5.0
,
6.0
]):
self
.
assertAlmostEqual
(
a
,
e
)
self
.
assertAlmostEqual
(
a
,
e
)
def
test_numpy
(
self
):
numpy_mat
=
np
.
matrix
([[
1
,
2
],
[
3
,
4
],
[
5
,
6
]],
dtype
=
"float32"
)
m
=
swig_paddle
.
Matrix
.
createDenseFromNumpy
(
numpy_mat
)
self
.
assertEqual
((
int
(
m
.
getHeight
()),
int
(
m
.
getWidth
())),
numpy_mat
.
shape
)
self
.
assertEqual
(
m
.
isGpu
(),
swig_paddle
.
isUsingGpu
())
for
a
,
e
in
zip
(
m
.
getData
(),
[
1.0
,
2.0
,
3.0
,
4.0
,
5.0
,
6.0
]):
self
.
assertAlmostEqual
(
a
,
e
)
if
__name__
==
"__main__"
:
if
__name__
==
"__main__"
:
swig_paddle
.
initPaddle
(
"--use_gpu=0"
)
swig_paddle
.
initPaddle
(
"--use_gpu=
1"
if
swig_paddle
.
isGpuVersion
()
else
"--use_gpu=
0"
)
unittest
.
main
()
unittest
.
main
()
paddle/api/test/testVector.py
浏览文件 @
70fecee0
...
@@ -20,20 +20,28 @@ import unittest
...
@@ -20,20 +20,28 @@ import unittest
class
TestIVector
(
unittest
.
TestCase
):
class
TestIVector
(
unittest
.
TestCase
):
def
test_createZero
(
self
):
def
test_createZero
(
self
):
m
=
swig_paddle
.
IVector
.
createZero
(
10
)
m
=
swig_paddle
.
IVector
.
createZero
(
10
,
False
)
self
.
assertIsNotNone
(
m
)
self
.
assertIsNotNone
(
m
)
for
i
in
xrange
(
10
):
for
i
in
xrange
(
10
):
self
.
assertEqual
(
m
[
i
],
0
)
self
.
assertEqual
(
m
[
i
],
0
)
m
[
i
]
=
i
m
[
i
]
=
i
self
.
assertEqual
(
m
[
i
],
i
)
self
.
assertEqual
(
m
[
i
],
i
)
m
=
swig_paddle
.
IVector
.
createZero
(
10
)
self
.
assertEqual
(
m
.
isGpu
(),
swig_paddle
.
isUsingGpu
())
self
.
assertEqual
(
m
.
getData
(),
[
0
]
*
10
)
def
test_create
(
self
):
def
test_create
(
self
):
m
=
swig_paddle
.
IVector
.
create
(
range
(
10
))
m
=
swig_paddle
.
IVector
.
create
(
range
(
10
)
,
False
)
self
.
assertIsNotNone
(
m
)
self
.
assertIsNotNone
(
m
)
for
i
in
xrange
(
10
):
for
i
in
xrange
(
10
):
self
.
assertEqual
(
m
[
i
],
i
)
self
.
assertEqual
(
m
[
i
],
i
)
m
=
swig_paddle
.
IVector
.
create
(
range
(
10
))
self
.
assertEqual
(
m
.
isGpu
(),
swig_paddle
.
isUsingGpu
())
self
.
assertEqual
(
m
.
getData
(),
range
(
10
))
def
test_numpy
(
self
):
def
test_
cpu_
numpy
(
self
):
vec
=
np
.
array
([
1
,
3
,
4
,
65
,
78
,
1
,
4
],
dtype
=
"int32"
)
vec
=
np
.
array
([
1
,
3
,
4
,
65
,
78
,
1
,
4
],
dtype
=
"int32"
)
iv
=
swig_paddle
.
IVector
.
createCpuVectorFromNumpy
(
vec
)
iv
=
swig_paddle
.
IVector
.
createCpuVectorFromNumpy
(
vec
)
self
.
assertEqual
(
vec
.
shape
[
0
],
int
(
iv
.
__len__
()))
self
.
assertEqual
(
vec
.
shape
[
0
],
int
(
iv
.
__len__
()))
...
@@ -61,25 +69,43 @@ class TestIVector(unittest.TestCase):
...
@@ -61,25 +69,43 @@ class TestIVector(unittest.TestCase):
expect_vec
=
range
(
0
,
10
)
expect_vec
=
range
(
0
,
10
)
expect_vec
[
4
]
=
7
expect_vec
[
4
]
=
7
self
.
assertEqual
(
vec
.
getData
(),
expect_vec
)
self
.
assertEqual
(
vec
.
getData
(),
expect_vec
)
def
test_numpy
(
self
):
vec
=
np
.
array
([
1
,
3
,
4
,
65
,
78
,
1
,
4
],
dtype
=
"int32"
)
iv
=
swig_paddle
.
IVector
.
createVectorFromNumpy
(
vec
)
self
.
assertEqual
(
iv
.
isGpu
(),
swig_paddle
.
isUsingGpu
())
self
.
assertEqual
(
iv
.
getData
(),
list
(
vec
))
class
TestVector
(
unittest
.
TestCase
):
class
TestVector
(
unittest
.
TestCase
):
def
testCreateZero
(
self
):
def
testCreateZero
(
self
):
v
=
swig_paddle
.
Vector
.
createZero
(
10
)
v
=
swig_paddle
.
Vector
.
createZero
(
10
,
False
)
self
.
assertIsNotNone
(
v
)
self
.
assertIsNotNone
(
v
)
for
i
in
xrange
(
len
(
v
)):
for
i
in
xrange
(
len
(
v
)):
self
.
assertTrue
(
util
.
doubleEqual
(
v
[
i
],
0
))
self
.
assertTrue
(
util
.
doubleEqual
(
v
[
i
],
0
))
v
[
i
]
=
i
v
[
i
]
=
i
self
.
assertTrue
(
util
.
doubleEqual
(
v
[
i
],
i
))
self
.
assertTrue
(
util
.
doubleEqual
(
v
[
i
],
i
))
v
=
swig_paddle
.
Vector
.
createZero
(
10
)
self
.
assertEqual
(
v
.
isGpu
(),
swig_paddle
.
isUsingGpu
())
self
.
assertEqual
(
v
.
getData
(),
[
0
]
*
10
)
def
testCreate
(
self
):
def
testCreate
(
self
):
v
=
swig_paddle
.
Vector
.
create
([
x
/
100.0
for
x
in
xrange
(
100
)])
v
=
swig_paddle
.
Vector
.
create
([
x
/
100.0
for
x
in
xrange
(
100
)]
,
False
)
self
.
assertIsNotNone
(
v
)
self
.
assertIsNotNone
(
v
)
for
i
in
xrange
(
len
(
v
)):
for
i
in
xrange
(
len
(
v
)):
self
.
assertTrue
(
util
.
doubleEqual
(
v
[
i
],
i
/
100.0
))
self
.
assertTrue
(
util
.
doubleEqual
(
v
[
i
],
i
/
100.0
))
self
.
assertEqual
(
100
,
len
(
v
))
self
.
assertEqual
(
100
,
len
(
v
))
v
=
swig_paddle
.
Vector
.
create
([
x
/
100.0
for
x
in
xrange
(
100
)])
self
.
assertEqual
(
v
.
isGpu
(),
swig_paddle
.
isUsingGpu
())
self
.
assertEqual
(
100
,
len
(
v
))
vdata
=
v
.
getData
()
for
i
in
xrange
(
len
(
v
)):
self
.
assertTrue
(
util
.
doubleEqual
(
vdata
[
i
],
i
/
100.0
))
def
testNumpy
(
self
):
def
test
Cpu
Numpy
(
self
):
numpy_arr
=
np
.
array
([
1.2
,
2.3
,
3.4
,
4.5
],
dtype
=
"float32"
)
numpy_arr
=
np
.
array
([
1.2
,
2.3
,
3.4
,
4.5
],
dtype
=
"float32"
)
vec
=
swig_paddle
.
Vector
.
createCpuVectorFromNumpy
(
numpy_arr
)
vec
=
swig_paddle
.
Vector
.
createCpuVectorFromNumpy
(
numpy_arr
)
assert
isinstance
(
vec
,
swig_paddle
.
Vector
)
assert
isinstance
(
vec
,
swig_paddle
.
Vector
)
...
@@ -102,9 +128,18 @@ class TestVector(unittest.TestCase):
...
@@ -102,9 +128,18 @@ class TestVector(unittest.TestCase):
for
i
in
xrange
(
1
,
len
(
numpy_3
)):
for
i
in
xrange
(
1
,
len
(
numpy_3
)):
util
.
doubleEqual
(
numpy_3
[
i
],
vec
[
i
])
util
.
doubleEqual
(
numpy_3
[
i
],
vec
[
i
])
def
testNumpy
(
self
):
numpy_arr
=
np
.
array
([
1.2
,
2.3
,
3.4
,
4.5
],
dtype
=
"float32"
)
vec
=
swig_paddle
.
Vector
.
createVectorFromNumpy
(
numpy_arr
)
self
.
assertEqual
(
vec
.
isGpu
(),
swig_paddle
.
isUsingGpu
())
vecData
=
vec
.
getData
()
for
n
,
v
in
zip
(
numpy_arr
,
vecData
):
self
.
assertTrue
(
util
.
doubleEqual
(
n
,
v
))
def
testCopyFromNumpy
(
self
):
def
testCopyFromNumpy
(
self
):
vec
=
swig_paddle
.
Vector
.
createZero
(
1
)
vec
=
swig_paddle
.
Vector
.
createZero
(
1
,
False
)
arr
=
np
.
array
([
1.3
,
3.2
,
2.4
],
dtype
=
"float32"
)
arr
=
np
.
array
([
1.3
,
3.2
,
2.4
],
dtype
=
"float32"
)
vec
.
copyFromNumpyArray
(
arr
)
vec
.
copyFromNumpyArray
(
arr
)
for
i
in
xrange
(
len
(
vec
)):
for
i
in
xrange
(
len
(
vec
)):
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录