提交 6f8d1906 编写于 作者: W Wang Zhen

Merge branch 'incubate/lite' into 'opencl_ci'

# Conflicts:
#   paddle/fluid/lite/core/CMakeLists.txt
#   paddle/fluid/lite/kernels/x86/CMakeLists.txt
#   paddle/fluid/lite/operators/CMakeLists.txt
......@@ -3,7 +3,8 @@ set(PADDLE_VERSION $ENV{PADDLE_VERSION})
set(tmp_version "HEAD")
set(TAG_VERSION_REGEX "[0-9]+\\.[0-9]+\\.[0-9]+(\\.(a|b|rc)\\.[0-9]+)?")
set(COMMIT_VERSION_REGEX "[0-9a-f]+[0-9a-f]+[0-9a-f]+[0-9a-f]+[0-9a-f]+")
set(LATEST_PADDLE_VERSION "latest")
# set(LATEST_PADDLE_VERSION "latest")
set(LATEST_PADDLE_VERSION "0.0.0")
while ("${PADDLE_VERSION}" STREQUAL "")
# Check current branch name
......
......@@ -79,5 +79,16 @@ const lite::Tensor *Predictor::GetTensor(const std::string &name) const {
return &var->Get<lite::Tensor>();
}
#ifdef LITE_WITH_X86
void Predictor::FeedVars(const std::vector<framework::Tensor> &tensors) {
auto var = scope_->FindVar("feed");
auto &feed_list = *(var->GetMutable<std::vector<lite::Tensor>>());
feed_list.resize(tensors.size());
for (size_t i = 0; i < tensors.size(); ++i)
feed_list[i].ShareDataWith(tensors[i]);
}
#endif
} // namespace lite
} // namespace paddle
......@@ -24,6 +24,10 @@
#include "paddle/fluid/lite/core/types.h"
#include "paddle/fluid/lite/model_parser/model_parser.h"
#ifdef LITE_WITH_X86
#include "paddle/fluid/framework/program_desc.h"
#endif
namespace paddle {
namespace lite {
......@@ -63,6 +67,15 @@ class Predictor {
// This method is disabled in mobile, for unnecessary dependencies required.
void SaveModel(const std::string& dir);
#ifdef LITE_WITH_X86
void Run(const std::vector<framework::Tensor>& tensors) {
FeedVars(tensors);
program_->Run();
}
void FeedVars(const std::vector<framework::Tensor>& tensors);
#endif
private:
Optimizer optimizer_;
framework::proto::ProgramDesc program_desc_;
......@@ -105,6 +118,16 @@ class CXXTrainer {
return main_program_executor_;
}
#ifdef LITE_WITH_X86
Predictor& BuildMainProgramExecutor(framework::ProgramDesc& desc) { // NOLINT
return BuildMainProgramExecutor(*desc.Proto());
}
void RunStartupProgram(framework::ProgramDesc& desc) { // NOLINT
RunStartupProgram(*desc.Proto());
}
#endif
// Run the startup program. It just executes once, no cache needed.
void RunStartupProgram(const framework::proto::ProgramDesc& desc,
int block_id = 0) {
......
......@@ -34,6 +34,7 @@ double time_diff(Time t1, Time t2) {
void Run(const char* model_dir, int repeat) {
#ifdef LITE_WITH_ARM
DeviceInfo::Init();
DeviceInfo::Global().SetRunMode(LITE_POWER_HIGH, 1);
#endif
lite::Predictor predictor;
std::vector<Place> valid_places({
......@@ -52,6 +53,7 @@ void Run(const char* model_dir, int repeat) {
data[i] = 1;
}
for (int i = 0; i < 10; i++) predictor.Run();
auto time1 = time();
for (int i = 0; i < repeat; i++) predictor.Run();
auto time2 = time();
......@@ -60,10 +62,16 @@ void Run(const char* model_dir, int repeat) {
auto* out = predictor.GetOutput(0);
LOG(INFO) << out << " memory size " << out->data_size();
LOG(INFO) << "out " << out->data<float>()[0];
LOG(INFO) << "out " << out->data<float>()[1];
LOG(INFO) << "dims " << out->dims();
LOG(INFO) << "out data size: " << out->data_size();
/*
float sum = 0.;
for (int i = 0; i < out->data_size(); i++) {
LOG(INFO) << "out " << out->data<float>()[i];
sum += out->data<float>()[i];
}
LOG(INFO) << sum;
*/
}
} // namespace lite
......
......@@ -19,15 +19,20 @@ endif()
proto_library(framework_proto_lite SRCS framework.proto)
if (LITE_WITH_X86)
lite_cc_library(variable_lite SRCS variable.cc DEPS framework_proto)
lite_cc_library(types_lite SRCS types.cc DEPS framework_proto)
else()
lite_cc_library(variable_lite SRCS variable.cc)
lite_cc_library(types_lite SRCS types.cc)
endif()
lite_cc_library(op_registry_lite SRCS op_registry.cc DEPS framework_proto_lite)
lite_cc_library(scope_lite SRCS scope.cc DEPS ${tensor_lite})
lite_cc_library(cpu_info_lite SRCS cpu_info.cc)
lite_cc_library(context_lite SRCS context.cc DEPS ${tensor_lite} any_lite cpu_info_lite X86_DEPS eigen3 CL_DEPS cl_helper)
lite_cc_library(context_lite SRCS context.cc DEPS ${tensor_lite} any_lite cpu_info_lite eigen3 CL_DEPS cl_helper)
lite_cc_library(kernel_lite SRCS kernel.cc DEPS context_lite type_system target_wrapper_lite any_lite op_params_lite framework_proto_lite ${tensor_lite})
lite_cc_library(op_lite SRCS op_lite.cc DEPS scope_lite op_registry_lite target_wrapper_lite kernel_lite
cpp_op_desc_lite ${tensor_lite})
lite_cc_library(types_lite SRCS types.cc)
lite_cc_library(type_system SRCS type_system.cc DEPS ${tensor_lite} target_wrapper_lite)
lite_cc_library(program_lite SRCS program.cc
......
......@@ -52,4 +52,6 @@ TEST(SSAGraph, test) {
} // namespace paddle
USE_LITE_OP(fc);
USE_LITE_KERNEL(fc, kHost, kFloat, kNCHW, def);
#ifdef LITE_WITH_X86
// USE_LITE_KERNEL(fc, kX86, kFloat, kNCHW, def);
#endif
......@@ -64,6 +64,7 @@ void RuntimeProgram::SaveParams(const std::string &dir,
void Program::Build(const framework::proto::ProgramDesc &program) {
CHECK(ops_.empty()) << "Executor duplicate Build found";
// Create operators.
for (const auto &proto_op_desc : program.blocks(0).ops()) {
lite::OpDesc op_desc_dummy(proto_op_desc);
......@@ -98,6 +99,7 @@ void Program::PrepareWorkspace(const framework::proto::ProgramDesc &program) {
} else {
if (var_desc.Name() == "feed" || var_desc.Name() == "fetch") continue;
weights_.push_back(var_desc.Name());
if (var_desc.Persistable()) scope_->Var(var_desc.Name());
}
}
}
......
......@@ -27,6 +27,12 @@ namespace lite {
class Scope final {
public:
Scope() {}
// delete below two functions to allow pybind to recognise it cannot make a
// copy
// link:
// https://stackoverflow.com/questions/53807248/pybind11-returning-a-pointer-to-a-container-of-unique-ptr
Scope(const Scope&) = delete;
Scope& operator=(const Scope&) = delete;
~Scope();
Scope& NewScope() const;
......
......@@ -15,12 +15,15 @@
#pragma once
#include <set>
#include <string>
#include <vector>
#include "paddle/fluid/lite/core/compatible_tensor.h"
#include "paddle/fluid/lite/utils/all.h"
namespace paddle {
namespace lite {
using FeedFetchList = std::vector<lite::Tensor>;
class Variable {
public:
template <typename T>
......@@ -40,7 +43,9 @@ class Variable {
}
private:
variant<int, float, std::string, lite::Tensor> blob_;
// variant<int, float, std::string, lite::Tensor> blob_;
variant<int, float, std::string, lite::Tensor, std::vector<lite::Tensor>>
blob_;
};
} // namespace lite
......
......@@ -74,7 +74,7 @@ void ConvCompute::PrepareForRun() {
} else if (param.groups == 1 && kw == 3 && stride == 2 && kps_equal &&
no_dilation) {
// direct conv impl
impl_ = new lite::arm::math::DirectConv<PRECISION(kFloat)>;
impl_ = new lite::arm::math::GemmLikeConv<PRECISION(kFloat)>;
VLOG(3) << "invoking direct conv";
} else {
impl_ = new lite::arm::math::GemmLikeConv<PRECISION(kFloat)>;
......@@ -123,8 +123,7 @@ void ConvComputeInt8<Ptype_out>::PrepareForRun() {
// weigth is int8 and bias is int32 so do not need trans
if (param.groups == ic && ic == oc && kps_equal && no_dilation && flag_dw) {
// impl_ = new lite::arm::math::DepthwiseConvInt8<Ptype_out>;
impl_ = new lite::arm::math::GemmLikeConvInt8<Ptype_out>;
impl_ = new lite::arm::math::DepthwiseConvInt8<Ptype_out>;
VLOG(3) << "Run DepthwiseConv Int8";
} else if (param.groups == 1 && kw == 3 && (sw == 1 || sw == 2) &&
kps_equal && no_dilation) {
......
......@@ -29,7 +29,7 @@ class FeedCompute
auto &param = Param<operators::FeedParam>();
VLOG(4) << "feed_list.size: " << param.feed_list->size();
VLOG(4) << "col " << param.col;
const lite::Tensor &feed_item = (*param.feed_list)[0];
const lite::Tensor &feed_item = (*param.feed_list)[param.col];
param.out->ShareDataWith(feed_item);
}
};
......
......@@ -18,6 +18,7 @@ lite_cc_library(concat_compute_x86 SRCS concat_compute.cc DEPS ${lite_kernel_dep
lite_cc_library(conv_compute_x86 SRCS conv_compute.cc DEPS ${lite_kernel_deps} blas im2col vol2col)
lite_cc_library(pool_compute_x86 SRCS pool_compute.cc DEPS ${lite_kernel_deps} pooling)
lite_cc_library(batch_norm_compute_x86 SRCS batch_norm_compute.cc DEPS ${lite_kernel_deps})
lite_cc_library(uniform_random_compute_x86 SRCS uniform_random_compute.cc DEPS ${lite_kernel_deps} )
lite_cc_test(test_fc_compute_x86 SRCS fc_compute_test.cc DEPS fc_compute_x86)
lite_cc_test(test_conv2d_compute_x86 SRCS conv_compute_test.cc DEPS conv_compute_x86)
......@@ -47,6 +48,7 @@ set(x86_kernels
conv_compute_x86
pool_compute_x86
batch_norm_compute_x86
)
set(x86_kernels "${x86_kernels}" CACHE INTERNAL "x86 kernels")
uniform_random_compute_x86
sgd_compute_x86
CACHE INTERNAL "x86 kernels")
......@@ -22,9 +22,19 @@ REGISTER_LITE_KERNEL(elementwise_sub, kX86, kFloat, kNCHW,
.BindOutput("Out", {LiteType::GetTensorTy(TARGET(kX86))})
.Finalize();
REGISTER_LITE_KERNEL(elementwise_sub_grad, kX86, kFloat, kNCHW,
paddle::lite::kernels::x86::ElementwiseSubCompute<float>,
REGISTER_LITE_KERNEL(elementwise_add, kX86, kFloat, kNCHW,
paddle::lite::kernels::x86::ElementwiseAddCompute<float>,
def)
.BindInput("X", {LiteType::GetTensorTy(TARGET(kX86))})
.BindInput("Y", {LiteType::GetTensorTy(TARGET(kX86))})
.BindOutput("Out", {LiteType::GetTensorTy(TARGET(kX86))})
.Finalize();
#ifdef LITE_WITH_X86
REGISTER_LITE_KERNEL(
elementwise_sub_grad, kX86, kFloat, kNCHW,
paddle::lite::kernels::x86::ElementwiseSubGradCompute<float>, def)
.BindInput("Y", {LiteType::GetTensorTy(TARGET(kX86))})
.BindInput(paddle::framework::GradVarName("Out"),
{LiteType::GetTensorTy(TARGET(kX86))})
.BindOutput(paddle::framework::GradVarName("X"),
......@@ -32,11 +42,4 @@ REGISTER_LITE_KERNEL(elementwise_sub_grad, kX86, kFloat, kNCHW,
.BindOutput(paddle::framework::GradVarName("Y"),
{LiteType::GetTensorTy(TARGET(kX86))})
.Finalize();
REGISTER_LITE_KERNEL(elementwise_add, kX86, kFloat, kNCHW,
paddle::lite::kernels::x86::ElementwiseAddCompute<float>,
def)
.BindInput("X", {LiteType::GetTensorTy(TARGET(kX86))})
.BindInput("Y", {LiteType::GetTensorTy(TARGET(kX86))})
.BindOutput("Out", {LiteType::GetTensorTy(TARGET(kX86))})
.Finalize();
#endif
......@@ -68,6 +68,7 @@ struct SubGradDY {
T operator()(T x, T y, T out, T dout) const { return -dout; }
};
#ifdef LITE_WITH_X86
template <typename T>
class ElementwiseSubGradCompute
: public KernelLite<TARGET(kX86), PRECISION(kFloat)> {
......@@ -79,20 +80,25 @@ class ElementwiseSubGradCompute
CHECK(context.x86_device_context());
param.X_grad->template mutable_data<T>();
param.Y_grad->template mutable_data<T>();
// skip out, x, y
auto dout = param.Out_grad->raw_tensor();
auto dx = param.X_grad->raw_tensor();
auto dy = param.Y_grad->raw_tensor();
framework::Tensor* dy = nullptr;
if (param.Y_grad) {
param.Y_grad->template mutable_data<T>();
dy = &param.Y_grad->raw_tensor();
}
auto& skip = dout;
paddle::operators::ElemwiseExplicitGradCompute<
platform::CPUDeviceContext, T, SubGradDX<T>, SubGradDY<T>>(
*context.x86_execution_context(), skip, skip, skip, dout, param.axis,
&dx, &dy, SubGradDX<T>(), SubGradDY<T>());
&dx, dy, SubGradDX<T>(), SubGradDY<T>());
}
virtual ~ElementwiseSubGradCompute() = default;
};
#endif
template <typename T>
class ElementwiseAddCompute
......
......@@ -49,6 +49,7 @@ class SGDCompute : public KernelLite<TARGET(kX86), PRECISION(kFloat)> {
const T *param_data = param->template data<T>();
const T *grad_data = grad->template data<T>();
int64_t rows_idx = 0;
T *out_data = param_out->template mutable_data<T>(
context.x86_device_context()->GetPlace());
......
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/fluid/framework/eigen.h"
#include "paddle/fluid/framework/operator.h"
#include "paddle/fluid/lite/core/kernel.h"
#include "paddle/fluid/lite/core/op_registry.h"
#include "paddle/fluid/operators/jit/kernels.h"
namespace paddle {
namespace lite {
namespace kernels {
namespace x86 {
template <typename T>
class UniformRandomCompute
: public KernelLite<TARGET(kX86), PRECISION(kFloat)> {
public:
void Run() override {
auto &context = ctx_->As<X86Context>();
auto &param = *param_.get_mutable<operators::UniformRandomParam>();
CHECK(context.x86_device_context());
auto *param_out = &param.Out->raw_tensor();
T *data =
param_out->mutable_data<T>(context.x86_device_context()->GetPlace());
unsigned int seed = static_cast<unsigned int>(param.seed);
std::minstd_rand engine;
if (seed == 0) {
seed = std::random_device()();
}
engine.seed(seed);
std::uniform_real_distribution<T> dist(static_cast<T>(param.min),
static_cast<T>(param.max));
int64_t size = param_out->numel();
for (int64_t i = 0; i < size; ++i) {
data[i] = dist(engine);
}
}
virtual ~UniformRandomCompute() = default;
};
} // namespace x86
} // namespace kernels
} // namespace lite
} // namespace paddle
// float
REGISTER_LITE_KERNEL(uniform_random, kX86, kFloat, kNCHW,
paddle::lite::kernels::x86::UniformRandomCompute<float>,
def)
.BindOutput("Out", {LiteType::GetTensorTy(TARGET(kX86))})
.Finalize();
......@@ -72,6 +72,10 @@ void AttrsPbToCpp(const pb::OpDesc &pb_desc, cpp::OpDesc *cpp_desc) {
cpp_desc->SetAttr<std::vector<std::string>>(
name, pb_desc.GetAttr<std::vector<std::string>>(name));
break;
case AttrType::LONGS:
cpp_desc->SetAttr<std::vector<int64_t>>(
name, pb_desc.GetAttr<std::vector<int64_t>>(name));
break;
default:
LOG(FATAL) << "Unsupported attr type found " << static_cast<int>(type);
}
......
......@@ -34,6 +34,7 @@ SET_ATTR_IMPL(bool, BOOLEAN);
SET_ATTR_IMPL(std::vector<int>, INTS);
SET_ATTR_IMPL(std::vector<float>, FLOATS);
SET_ATTR_IMPL(std::vector<std::string>, STRINGS);
SET_ATTR_IMPL(std::vector<int64_t>, LONGS);
std::pair<OpDesc::attrs_t::const_iterator, OpDesc::attr_types_t::const_iterator>
FindAttr(const cpp::OpDesc& desc, const std::string& name) {
......
......@@ -58,6 +58,12 @@ class OpDesc : public OpDescAPI {
std::map<std::string, std::vector<std::string>>* mutable_outputs() {
return &outputs_;
}
bool HasInput(const std::string& param) const {
auto it = inputs_.find(param);
return it != inputs_.end();
}
std::vector<std::string> Input(const std::string& param) const override {
auto it = inputs_.find(param);
CHECK(it != inputs_.end());
......@@ -75,6 +81,11 @@ class OpDesc : public OpDescAPI {
return res;
}
bool HasOutput(const std::string& param) const {
auto it = outputs_.find(param);
return it != outputs_.end();
}
std::vector<std::string> Output(const std::string& param) const override {
auto it = outputs_.find(param);
CHECK(it != outputs_.end());
......
......@@ -121,6 +121,7 @@ GET_ATTRS_IMPL(std::vector<int>, ints);
GET_ATTRS_IMPL(std::vector<float>, floats);
GET_ATTRS_IMPL(std::vector<std::string>, strings);
GET_ATTR_IMPL(std::string, s);
GET_ATTRS_IMPL(std::vector<int64_t>, longs);
} // namespace pb
} // namespace lite
......
......@@ -17,7 +17,9 @@ lite_cc_library(elementwise_ops_lite SRCS elementwise_ops.cc DEPS ${op_DEPS})
lite_cc_library(fusion_elementwise_activation_ops_lite SRCS fusion_elementwise_activation_ops.cc DEPS elementwise_ops_lite ${op_DEPS})
lite_cc_library(mean_op_lite SRCS mean_op.cc DEPS ${op_DEPS})
lite_cc_library(fill_constant_op_lite SRCS fill_constant_op.cc DEPS ${op_DEPS})
#lite_cc_library(sgd_op_lite SRCS sgd_op.cc DEPS ${op_DEPS})
lite_cc_library(sgd_op_lite SRCS sgd_op.cc DEPS ${op_DEPS})
lite_cc_library(uniform_random_op_lite SRCS uniform_random_op.cc DEPS ${op_DEPS})
lite_cc_library(op_params_lite SRCS op_params.cc DEPS ${tensor_lite} any_lite framework_proto_lite)
lite_cc_library(dropout_op_lite SRCS dropout_op.cc DEPS ${op_DEPS})
lite_cc_library(concat_op_lite SRCS concat_op.cc DEPS ${op_DEPS})
......@@ -52,7 +54,9 @@ set(ops_lite
transpose_op_lite
fake_quant
fake_dequant
PARENT_SCOPE)
sgd_op_lite
uniform_random_op_lite
CACHE INTERNAL "ops lite")
lite_cc_test(test_fc_op_lite SRCS fc_op_test.cc
DEPS fc_op_lite memory_lite
......
......@@ -72,6 +72,21 @@ class ActivationGradOp : public OpLite {
param_.Out_grad = GetVar<lite::Tensor>(scope, Out_grad_name);
param_.X_grad = GetMutableVar<Tensor>(scope, X_grad_name);
if (opdesc.HasInput("X")) {
auto X_name = opdesc.Input("X").front();
param_.X = GetVar<lite::Tensor>(scope, X_name);
} else {
param_.X = param_.X_grad;
}
if (opdesc.HasInput("Out")) {
auto Out_name = opdesc.Input("Out").front();
param_.Out = GetVar<lite::Tensor>(scope, Out_name);
} else {
param_.Out = param_.Out_grad;
}
return true;
}
......
......@@ -48,31 +48,35 @@ bool ElementwiseOp::AttachImpl(const cpp::OpDesc& opdesc, lite::Scope* scope) {
bool ElementwiseGradExplicitOp::CheckShape() const {
CHECK_OR_FALSE(param_.Y);
CHECK_OR_FALSE(param_.X_grad);
CHECK_OR_FALSE(param_.Y_grad);
CHECK_OR_FALSE(param_.Out_grad);
return true;
}
bool ElementwiseGradExplicitOp::InferShape() const {
param_.X_grad->Resize(param_.Out_grad->dims());
param_.Y_grad->Resize(param_.Y->dims());
if (param_.Y_grad) param_.Y_grad->Resize(param_.Y->dims());
return true;
}
bool ElementwiseGradExplicitOp::AttachImpl(const cpp::OpDesc& opdesc,
lite::Scope* scope) {
CHECK_EQ(opdesc.InputArgumentNames().size(), 1UL);
CHECK_EQ(opdesc.InputArgumentNames().size(), 2UL);
auto Y_name = opdesc.Input("Y").front();
auto Out_name = opdesc.Input(framework::GradVarName("Out")).front();
auto X_name = opdesc.Output(framework::GradVarName("X")).front();
auto Y_name = opdesc.Output(framework::GradVarName("Y")).front();
auto X_grad = opdesc.Output(framework::GradVarName("X")).front();
if (opdesc.Output(framework::GradVarName("Y")).size() > 0) {
auto Y_grad = opdesc.Output(framework::GradVarName("Y")).front();
param_.Y_grad = GetMutableVar<Tensor>(scope, Y_grad);
}
param_.Y = GetVar<lite::Tensor>(scope, Y_name);
param_.Out_grad = GetVar<lite::Tensor>(scope, Out_name);
param_.X_grad = GetMutableVar<lite::Tensor>(scope, X_name);
param_.Y_grad = GetMutableVar<Tensor>(scope, Y_name);
param_.X_grad = GetMutableVar<lite::Tensor>(scope, X_grad);
param_.axis = opdesc.GetAttr<int>("axis");
return true;
}
#endif
} // namespace operators
......
......@@ -36,7 +36,7 @@ class FillConstantOp : public OpLite {
bool AttachImpl(const cpp::OpDesc& opdesc, lite::Scope* scope) override {
auto Out_name = opdesc.Output("Out").front();
param_.Out = GetMutableVar<Tensor>(scope, Out_name);
param_.Out = GetMutableVar<lite::Tensor>(scope, Out_name);
param_.dtype = opdesc.GetAttr<int>("dtype");
param_.shape = opdesc.GetAttr<std::vector<int64_t>>("shape");
param_.value = opdesc.GetAttr<float>("value");
......
......@@ -51,7 +51,7 @@ class MeanOp : public OpLite {
std::string DebugString() const override { return "mean"; }
private:
mutable operators::ElementwiseParam param_;
mutable operators::MeanParam param_;
};
#ifdef LITE_WITH_X86
......@@ -73,7 +73,7 @@ class MeanGradOp : public OpLite {
}
bool AttachImpl(const cpp::OpDesc& opdesc, lite::Scope* scope) override {
CHECK_EQ(opdesc.InputArgumentNames().size(), 3UL);
CHECK_EQ(opdesc.InputArgumentNames().size(), 2UL);
auto X_name = opdesc.Input("X").front();
auto Out_grad_name = opdesc.Input(framework::GradVarName("Out")).front();
auto X_grad_name = opdesc.Output(framework::GradVarName("X")).front();
......
......@@ -31,16 +31,18 @@ bool MulOpLite::CheckShape() const {
CHECK_GT_OR_FALSE(x_dims.size(), static_cast<size_t>(param_.x_num_col_dims));
CHECK_GT_OR_FALSE(y_dims.size(), static_cast<size_t>(param_.y_num_col_dims));
// auto x_mat_dims =
// framework::flatten_to_2d(x_dims.data(), param_.x_num_col_dims);
// auto y_mat_dims =
// framework::flatten_to_2d(y_dims.data(), param_.y_num_col_dims);
// PADDLE_ENFORCE_EQ(x_mat_dims[1], y_mat_dims[0],
// "First matrix's width must be equal with second matrix's
// "
// "height. %s, %s",
// x_mat_dims[1], y_mat_dims[0]);
#ifndef LITE_WITH_LIGHT_WEIGHT_FRAMEWORK
auto x_mat_dims =
framework::flatten_to_2d(x_dims.data(), param_.x_num_col_dims);
auto y_mat_dims =
framework::flatten_to_2d(y_dims.data(), param_.y_num_col_dims);
PADDLE_ENFORCE_EQ(x_mat_dims[1], y_mat_dims[0],
"First matrix's width must be equal with second matrix's"
"height. %s, %s",
x_mat_dims[1], y_mat_dims[0]);
#endif
return true;
}
......@@ -73,30 +75,34 @@ bool MulGradOpLite::CheckShape() const {
CHECK_OR_FALSE(param_.x);
CHECK_OR_FALSE(param_.y);
CHECK_OR_FALSE(param_.output_grad);
CHECK_OR_FALSE(param_.x_grad);
CHECK_OR_FALSE(param_.y_grad);
return true;
}
bool MulGradOpLite::InferShape() const {
param_.x_grad->Resize(param_.x->dims());
param_.y_grad->Resize(param_.y->dims());
if (param_.x_grad) param_.x_grad->Resize(param_.x->dims());
if (param_.y_grad) param_.y_grad->Resize(param_.y->dims());
return true;
}
bool MulGradOpLite::AttachImpl(const cpp::OpDesc &op_desc, lite::Scope *scope) {
auto X_name = op_desc.Input("X").front();
auto Y_name = op_desc.Input("Y").front();
auto Out_grad_name = op_desc.Output(framework::GradVarName("Out")).front();
auto X_grad_name = op_desc.Output(framework::GradVarName("X")).front();
auto Y_grad_name = op_desc.Output(framework::GradVarName("Y")).front();
auto Out_grad_name = op_desc.Input(framework::GradVarName("Out")).front();
if (op_desc.Output(framework::GradVarName("X")).size()) {
auto X_grad_name = op_desc.Output(framework::GradVarName("X")).front();
param_.x_grad = GetMutableVar<lite::Tensor>(scope, X_grad_name);
}
if (op_desc.Output(framework::GradVarName("Y")).size()) {
auto Y_grad_name = op_desc.Output(framework::GradVarName("Y")).front();
param_.y_grad = GetMutableVar<lite::Tensor>(scope, Y_grad_name);
}
param_.x = GetVar<lite::Tensor>(scope, X_name);
param_.y = GetVar<lite::Tensor>(scope, Y_name);
param_.output_grad = GetVar<lite::Tensor>(scope, Out_grad_name);
param_.x_grad = GetMutableVar<lite::Tensor>(scope, X_grad_name);
param_.y_grad = GetMutableVar<lite::Tensor>(scope, Y_grad_name);
return true;
}
......@@ -107,3 +113,6 @@ bool MulGradOpLite::AttachImpl(const cpp::OpDesc &op_desc, lite::Scope *scope) {
} // namespace paddle
REGISTER_LITE_OP(mul, paddle::lite::operators::MulOpLite);
#ifdef LITE_WITH_X86
REGISTER_LITE_OP(mul_grad, paddle::lite::operators::MulGradOpLite);
#endif
......@@ -66,6 +66,7 @@ class MulOpLite : public OpLite {
mutable MulParam param_;
};
#ifdef LITE_WITH_X86
class MulGradOpLite : public OpLite {
public:
MulGradOpLite() {}
......@@ -85,6 +86,7 @@ class MulGradOpLite : public OpLite {
private:
mutable MulGradParam param_;
};
#endif
} // namespace operators
} // namespace lite
......
......@@ -36,7 +36,7 @@ using param_t = Any;
/// ----------------------- Functional operators ------------------------------
struct FeedParam {
const std::vector<lite::Tensor>* feed_list{};
std::vector<lite::Tensor>* feed_list{};
lite::Tensor* out{};
int col;
};
......@@ -317,6 +317,16 @@ struct SGDParam {
lite::Tensor* ParamOut{};
};
/// ----------------------- uniform_random operators ----------------------
struct UniformRandomParam {
std::vector<int64_t> shape{};
float min{-1.0f};
float max{1.0f};
int seed{0};
int dtype{framework::proto::VarType::FP32};
lite::Tensor* Out{};
};
} // namespace operators
} // namespace lite
} // namespace paddle
......@@ -12,7 +12,7 @@
// See the License for the specific language governing permissions and
// limitations under the License.
#include "/paddle/paddle/fluid/lite/operators/sgd_op.h"
#include "paddle/fluid/lite/operators/sgd_op.h"
#include "paddle/fluid/lite/core/op_lite.h"
#include "paddle/fluid/lite/core/op_registry.h"
......@@ -30,13 +30,14 @@ bool SGDOpLite::CheckShape() const {
bool SGDOpLite::InferShape() const {
auto lr_dims = param_.LearningRate->dims().data();
#ifndef LITE_WITH_LIGHT_WEIGHT_FRAMEWORK
CHECK_EQ_OR_FALSE(framework::product(lr_dims), 1);
#endif
param_.ParamOut->Resize(param_.Param->dims());
return true;
}
bool SGDOpLite::AttachImpl(const OpDesc& opdesc, lite::Scope* scope) {
CHECK_EQ(opdesc.Inputs().size(), 3UL);
bool SGDOpLite::AttachImpl(const cpp::OpDesc& opdesc, lite::Scope* scope) {
auto Param_name = opdesc.Input("Param").front();
auto LearningRate_name = opdesc.Input("LearningRate").front();
auto Grad_name = opdesc.Input("Grad").front();
......
......@@ -37,7 +37,7 @@ class SGDOpLite : public OpLite {
void AttachKernel(KernelBase *kernel) override { kernel->SetParam(param_); }
bool AttachImpl(const OpDesc &op_desc, lite::Scope *scope) override;
bool AttachImpl(const cpp::OpDesc &op_desc, lite::Scope *scope) override;
std::string DebugString() const override { return "sgd"; }
......
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/fluid/lite/operators/uniform_random_op.h"
#include "paddle/fluid/lite/core/op_lite.h"
#include "paddle/fluid/lite/core/op_registry.h"
namespace paddle {
namespace lite {
namespace operators {
bool UniformRandomOpLite::CheckShape() const { return true; }
bool UniformRandomOpLite::InferShape() const {
param_.Out->Resize(param_.shape);
return true;
}
bool UniformRandomOpLite::AttachImpl(const cpp::OpDesc& opdesc,
lite::Scope* scope) {
param_.shape = opdesc.GetAttr<std::vector<int64_t>>("shape");
param_.min = opdesc.GetAttr<float>("min");
param_.max = opdesc.GetAttr<float>("max");
param_.seed = opdesc.GetAttr<int>("seed");
param_.dtype = opdesc.GetAttr<int>("dtype");
param_.Out = GetMutableVar<Tensor>(scope, opdesc.Output("Out").front());
return true;
}
} // namespace operators
} // namespace lite
} // namespace paddle
REGISTER_LITE_OP(uniform_random, paddle::lite::operators::UniformRandomOpLite);
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include <string>
#include <vector>
#include "paddle/fluid/lite/core/kernel.h"
#include "paddle/fluid/lite/core/op_lite.h"
#include "paddle/fluid/lite/core/scope.h"
#include "paddle/fluid/lite/operators/op_params.h"
#include "paddle/fluid/lite/utils/all.h"
namespace paddle {
namespace lite {
namespace operators {
class UniformRandomOpLite : public OpLite {
public:
UniformRandomOpLite() {}
explicit UniformRandomOpLite(const std::string &type) : OpLite(type) {}
bool CheckShape() const override;
bool InferShape() const override;
void AttachKernel(KernelBase *kernel) override { kernel->SetParam(param_); }
bool AttachImpl(const cpp::OpDesc &op_desc, lite::Scope *scope) override;
std::string DebugString() const override { return "uniform_random"; }
private:
mutable UniformRandomParam param_;
};
} // namespace operators
} // namespace lite
} // namespace paddle
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import paddle
import paddle.fluid as fluid
import paddle.fluid.compiler as compiler
import paddle.fluid.core as core
import paddle.fluid.core.lite as lite
import paddle.fluid.layers as layers
import numpy as np
import unittest
from paddle.fluid.cxx_trainer import add_feed_fetch_op
def _as_lodtensor(data, place):
# single tensor case
tensor = core.LoDTensor()
tensor.set(data, place)
return tensor
data_label = [[
0.753544, 0.772977, 0.646915, 0.747543, 0.528923, 0.0517749, 0.248678,
0.75932, 0.960376, 0.606618
]]
data_a = [[
0.874445, 0.21623, 0.713262, 0.702672, 0.396977, 0.828285, 0.932995,
0.442674, 0.0321735, 0.484833, 0.045935, 0.21276, 0.556421, 0.131825,
0.285626, 0.741409, 0.257467, 0.975958, 0.444006, 0.114553
]]
data_loss = [0.9876687]
class NaiveModelTest(unittest.TestCase):
def test_model(self):
start_prog = fluid.Program()
main_prog = fluid.Program()
start_prog.random_seed = 100
main_prog.random_seed = 100
with fluid.program_guard(main_prog, start_prog):
a = fluid.layers.data(name="a", shape=[1, 20], dtype='float32')
label = fluid.layers.data(name="label", shape=[10], dtype='float32')
a1 = fluid.layers.fc(input=a, size=10, act=None, bias_attr=False)
cost = fluid.layers.square_error_cost(a1, label)
avg_cost = fluid.layers.mean(cost)
optimizer = fluid.optimizer.SGD(learning_rate=0.001)
optimizer.minimize(avg_cost)
x86_place = lite.Place(lite.TargetType.kX86,
lite.PrecisionType.kFloat,
lite.DataLayoutType.kNCHW, 0)
host_place = lite.Place(lite.TargetType.kHost,
lite.PrecisionType.kFloat,
lite.DataLayoutType.kNCHW, 0)
scope = lite.Scope()
trainer = lite.CXXTrainer(scope, x86_place, [x86_place, host_place])
trainer.run_startup_program(start_prog.desc)
cpu = fluid.core.CPUPlace()
main_prog = add_feed_fetch_op(
main_prog,
feed=['a', 'label'],
fetch_list={avg_cost},
scope=scope,
place=cpu)
# print(main_prog)
exe = trainer.build_main_program_executor(main_prog.desc)
feed_data = [
_as_lodtensor(np.array(data_a, object), cpu),
_as_lodtensor(np.array(data_label, object), cpu)
]
exe.run(feed_data)
# print(np.array(exe.get_output(0).raw_tensor()))
self.assertTrue(
np.allclose(
np.array(data_loss),
np.array(exe.get_output(0).raw_tensor()),
atol=1e-8),
"lite result not equel to offline result")
if __name__ == '__main__':
unittest.main()
......@@ -154,6 +154,26 @@ function build_test_server {
test_lite $TESTS_FILE
}
function build_test_train {
mkdir -p ./build
cd ./build
export LD_LIBRARY_PATH="$LD_LIBRARY_PATH:/paddle/build/third_party/install/mklml/lib"
prepare_workspace # fake an empty __generated_code__.cc to pass cmake.
cmake .. -DWITH_LITE=ON -DWITH_GPU=OFF -DWITH_PYTHON=ON -DLITE_WITH_X86=ON -DLITE_WITH_LIGHT_WEIGHT_FRAMEWORK=OFF -DWITH_TESTING=ON -DWITH_MKL=OFF
make test_gen_code_lite -j$NUM_CORES_FOR_COMPILE
make test_cxx_api_lite -j$NUM_CORES_FOR_COMPILE
ctest -R test_cxx_api_lite
ctest -R test_gen_code_lite
make test_generated_code -j$NUM_CORES_FOR_COMPILE
make -j$NUM_CORES_FOR_COMPILE
find -name "*.whl" | xargs pip2 install
python ../paddle/fluid/lite/python/lite_test.py
}
# test_arm_android <some_test_name> <adb_port_number>
function test_arm_android {
local test_name=$1
......@@ -603,6 +623,10 @@ function main {
build_test_server
shift
;;
build_test_train)
build_test_train
shift
;;
build_test_arm)
build_test_arm
shift
......
set(PYBIND_DEPS pybind python proto_desc memory executor async_executor fleet_wrapper nccl_wrapper prune
feed_fetch_method pass_builder parallel_executor profiler layer scope_pool
tracer analysis_predictor imperative_profiler nccl_context)
message(STATUS "use ${x86_kernels}")
message(STATUS "use ${ops_lite}")
if(WITH_PYTHON)
cc_library(bind_executor_lite SRCS executor_lite.cc DEPS pybind framework_proto)
set(PYBIND_DEPS pybind python proto_desc memory executor async_executor fleet_wrapper nccl_wrapper prune
feed_fetch_method pass_builder parallel_executor profiler layer scope_pool bind_executor_lite cxx_api_lite scope_lite ${ops_lite} ${host_kernels} ${x86_kernels} mir_passes kernel_lite op_lite optimizer_lite
tracer analysis_predictor imperative_profiler nccl_context)
endif(WITH_PYTHON)
if(WITH_PYTHON)
list(APPEND PYBIND_DEPS py_func_op)
......
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/pybind/executor_lite.h"
#include <pybind11/stl.h>
#include <memory>
#include <vector>
#include "paddle/fluid/lite/api/cxx_api.h"
#include "paddle/fluid/lite/api/paddle_use_passes.h"
#include "paddle/fluid/lite/core/hvy_tensor.h"
#include "paddle/fluid/lite/core/scope.h"
#include "pybind11/pybind11.h"
namespace lt = paddle::lite;
namespace py = pybind11;
namespace paddle {
namespace pybind {
void BindTensor(pybind11::module* m) {
pybind11::class_<lt::TensorHvy>(*m, "Tensor")
.def(pybind11::init<>())
.def("raw_tensor", [](lt::TensorHvy& self) { return self.raw_tensor(); })
.def("share_data_with",
[](lt::TensorHvy& self, const framework::Tensor& other) {
self.ShareDataWith(other);
});
}
void BindVariable(pybind11::module* m) {
pybind11::class_<lt::Variable>(*m, "Variable")
.def("get_mutable_tensor",
[](lt::Variable& self) { return self.GetMutable<lt::Tensor>(); })
.def("get_mutable_fetch_list",
[](lt::Variable& self) -> paddle::lite::FeedFetchList* {
return self.GetMutable<paddle::lite::FeedFetchList>();
},
py::return_value_policy::reference);
}
void BindScope(pybind11::module* m) {
py::class_<lt::Scope, std::shared_ptr<lt::Scope>>(*m, "Scope")
.def(pybind11::init<>())
.def("new_scope",
[](lt::Scope& self) -> lt::Scope* { return &self.NewScope(); },
py::return_value_policy::reference)
.def("var", &lt::Scope::Var, pybind11::return_value_policy::reference)
.def("find_var", &lt::Scope::FindVar,
pybind11::return_value_policy::reference)
.def("find_local_var", &lt::Scope::FindLocalVar,
pybind11::return_value_policy::reference)
.def("parent", &lt::Scope::parent,
pybind11::return_value_policy::reference)
.def("local_var_names", &lt::Scope::LocalVarNames,
pybind11::return_value_policy::reference);
}
void BindExecutorLite(pybind11::module* m) {
py::class_<lt::Predictor>(*m, "Predictor")
.def(pybind11::init<>())
.def("__init__",
[](lt::Predictor& self,
const std::shared_ptr<lt::Scope>& root_scope) {
new (&self) lt::Predictor(root_scope);
})
.def("get_input", &lt::Predictor::GetInput,
pybind11::return_value_policy::reference)
.def("get_output", &lt::Predictor::GetOutput,
pybind11::return_value_policy::reference)
.def("run", [](lt::Predictor& self) { self.Run(); })
.def("run", [](lt::Predictor& self,
const std::vector<framework::Tensor>& tensors) {
self.Run(tensors);
});
}
void BindEnums(pybind11::module* m) {
py::enum_<lt::TargetType>(*m, "TargetType", py::arithmetic(),
"TargetType enum")
.value("kUnk", lt::TargetType::kUnk)
.value("kHost", lt::TargetType::kHost)
.value("kX86", lt::TargetType::kX86)
.value("kCUDA", lt::TargetType::kCUDA)
.value("kARM", lt::TargetType::kARM)
.value("kAny", lt::TargetType::kAny)
.value("NUM", lt::TargetType::NUM);
py::enum_<lt::PrecisionType>(*m, "PrecisionType", py::arithmetic(),
"PrecisionType enum")
.value("kUnk", lt::PrecisionType::kUnk)
.value("kFloat", lt::PrecisionType::kFloat)
.value("kInt8", lt::PrecisionType::kInt8)
.value("kAny", lt::PrecisionType::kAny)
.value("NUM", lt::PrecisionType::NUM);
py::enum_<lt::DataLayoutType>(*m, "DataLayoutType", py::arithmetic(),
"DataLayoutType enum")
.value("kUnk", lt::DataLayoutType::kUnk)
.value("kNCHW", lt::DataLayoutType::kNCHW)
.value("kAny", lt::DataLayoutType::kAny)
.value("NUM", lt::DataLayoutType::NUM);
}
void BindPlace(pybind11::module* m) {
pybind11::class_<lt::Place, std::shared_ptr<lt::Place>>(*m, "Place")
.def(pybind11::init<>())
.def("__init__",
[](lt::Place& self, lt::TargetType target,
lt::PrecisionType precision, lt::DataLayoutType layout,
int16_t device) {
new (&self) lt::Place(target, precision, layout, device);
})
.def("is_valid", &lt::Place::is_valid,
pybind11::return_value_policy::reference);
}
void BindCXXTrainer(pybind11::module* m) {
pybind11::class_<lt::CXXTrainer, std::shared_ptr<lt::CXXTrainer>>(
*m, "CXXTrainer")
.def(
"__init__",
[](lt::CXXTrainer& self, const std::shared_ptr<lt::Scope>& root_scope,
const lt::Place& preferred_place,
const std::vector<lt::Place>& valid_places) {
new (&self)
lt::CXXTrainer(root_scope, preferred_place, valid_places);
})
.def("build_main_program_executor",
[](lt::CXXTrainer& self,
framework::ProgramDesc& desc) -> lt::Predictor& {
return self.BuildMainProgramExecutor(desc);
},
pybind11::return_value_policy::reference)
.def("run_startup_program",
[](lt::CXXTrainer& self, framework::ProgramDesc& desc) {
return self.RunStartupProgram(desc);
});
}
void BindLite(pybind11::module* m) {
BindTensor(m);
BindVariable(m);
BindScope(m);
BindExecutorLite(m);
BindEnums(m);
BindPlace(m);
BindCXXTrainer(m);
}
} // namespace pybind
} // namespace paddle
// USE_LITE_OP(mul);
USE_LITE_OP(elementwise_sub);
USE_LITE_OP(uniform_random);
USE_LITE_OP(feed);
USE_LITE_OP(fetch);
USE_LITE_OP(fill_constant);
USE_LITE_OP(mul);
USE_LITE_OP(mul_grad);
USE_LITE_OP(mean);
USE_LITE_OP(square);
USE_LITE_OP(sgd);
USE_LITE_KERNEL(feed, kHost, kAny, kAny, def);
USE_LITE_KERNEL(fetch, kHost, kAny, kAny, def);
#ifdef LITE_WITH_X86
USE_LITE_KERNEL(uniform_random, kX86, kFloat, kNCHW, def);
USE_LITE_KERNEL(fill_constant, kX86, kFloat, kNCHW, def);
USE_LITE_KERNEL(mul, kX86, kFloat, kNCHW, def);
USE_LITE_KERNEL(mul_grad, kX86, kFloat, kNCHW, def);
USE_LITE_KERNEL(square, kX86, kFloat, kNCHW, def);
USE_LITE_KERNEL(mean, kX86, kFloat, kNCHW, def);
USE_LITE_KERNEL(sgd, kX86, kFloat, kNCHW, def);
USE_LITE_KERNEL(elementwise_sub, kX86, kFloat, kNCHW, def);
USE_LITE_KERNEL(elementwise_sub_grad, kX86, kFloat, kNCHW, def);
#endif
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include <Python.h>
#include "pybind11/pybind11.h"
namespace paddle {
namespace pybind {
void BindLite(pybind11::module* m);
} // namespace pybind
} // namespace paddle
......@@ -54,6 +54,7 @@ limitations under the License. */
#include "paddle/fluid/pybind/const_value.h"
#include "paddle/fluid/pybind/data_set_py.h"
#include "paddle/fluid/pybind/exception.h"
#include "paddle/fluid/pybind/executor_lite.h"
#include "paddle/fluid/pybind/fleet_wrapper_py.h"
#include "paddle/fluid/pybind/imperative.h"
#include "paddle/fluid/pybind/inference_api.h"
......@@ -366,6 +367,7 @@ PYBIND11_MODULE(core, m) {
.def("set", PyCUDAPinnedTensorSetFromArray<int8_t>)
#endif
.def("shape", [](Tensor &self) { return vectorize(self.dims()); })
.def("memory_size", [](Tensor &self) { return self.memory_size(); })
.def("_set_float_element", TensorSetElement<float>)
.def("_get_float_element", TensorGetElement<float>)
.def("_set_double_element", TensorSetElement<double>)
......@@ -1528,6 +1530,9 @@ All parameter, weight, gradient are variables in Paddle.
BindNode(&m);
BindInferenceApi(&m);
BindDataset(&m);
py::module lite = m.def_submodule("lite", "submodule lite");
BindLite(&lite);
}
} // namespace pybind
} // namespace paddle
......@@ -65,6 +65,7 @@ from paddle.fluid.layers.math_op_patch import monkey_patch_variable
from . import install_check
from .dygraph.nn import *
from .dygraph.layers import *
from .cxx_trainer import *
Tensor = LoDTensor
......
......@@ -71,6 +71,7 @@ def _create_op_desc_(op_type, inputs, outputs, attrs):
op_desc.set_block_attr(name, val.desc)
else:
op_desc._set_attr(name, val)
op_desc.check_attrs()
return op_desc
......
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import print_function
from . import core
from . import framework
from . import executor
from . import compiler
import sys
from .framework import default_main_program, Variable
__all__ = ['add_feed_fetch_op']
def _has_feed_operators(block, feed_targets, feed_holder_name):
""" Check whether the block already has feed operators.
Return false if the block does not have any feed operators.
If some feed operators have been prepended to the block, check that
the info contained in these feed operators matches the feed_targets
and feed_holder_name. Raise exception when any mismatch is found.
Return true when the block has feed operators with matching info.
Args:
block: a block instance (typically global block of a program)
feed_targets: a dictionary of {feed_target_name: feed_target_data}
feed_holder_name: the name of the variable that holds the data of
all feed targets. The type of this feed_holder variable is
FEED_MINIBATCH, which is essentially vector<LoDTensor>.
Returns:
A boolean value that indicates whether a block has feed operators
that match the info contained in feed_targets and feed_holder_name.
"""
feed_count = 0
for op in block.ops:
if op.desc.type() == 'feed':
feed_count += 1
assert op.desc.input('X')[0] == feed_holder_name
feed_target_name = op.desc.output('Out')[0]
if feed_target_name not in feed_targets:
raise Exception("'feed_targets' does not have {} variable".
format(feed_target_name))
else:
break
if feed_count > 0 and feed_count != len(feed_targets):
raise Exception(
"Feed operators in program desc do not match 'feed_targets'")
return feed_count > 0
def _has_fetch_operators(block, fetch_targets, fetch_holder_name):
""" Check whether the block already has fetch operators.
Return false if the block does not have any fetch operators.
If some fetch operators have been appended to the block, check that
the info contained in these fetch operators matches the fetch_targets
and fetch_holder_name. Raise exception when any mismatch is found.
Return true when the block has fetch operators with matching info.
Args:
block: a block instance (typically global block of a program)
fetch_targets: a dictionary of {fetch_target_name: fetch_target_data}
fetch_holder_name: the name of the variable that holds the data of
all fetch targets. The type of this fetch_holder variable is
FETCH_LIST, which is essentially vector<LoDTensor>.
Return:
A boolean value that indicates whether a block has fetch operators
that match the info contained in fetch_targets and fetch_holder_name.
"""
fetch_count = 0
for op in block.ops:
if op.desc.type() == 'fetch':
fetch_count += 1
assert op.desc.output('Out')[0] == fetch_holder_name
fetch_target_name = op.desc.input('X')[0]
if fetch_target_name not in [
var.desc.name() for var in fetch_targets
]:
raise Exception("'fetch_targets' does not have {} variable".
format(fetch_target_name))
idx = op.desc.attr('col')
assert fetch_target_name == fetch_targets[idx].desc.name()
if fetch_count > 0 and fetch_count != len(fetch_targets):
raise Exception(
"Fetch operators in program desc do not match 'fetch_targets'")
return fetch_count > 0
def _add_feed_fetch_ops(program,
feed,
fetch_list,
feed_var_name='feed',
fetch_var_name='fetch'):
tmp_program = program.clone()
global_block = tmp_program.global_block()
if feed_var_name in global_block.vars:
feed_var = global_block.var(feed_var_name)
else:
feed_var = global_block.create_var(
name=feed_var_name,
type=core.VarDesc.VarType.FEED_MINIBATCH,
persistable=True)
if fetch_var_name in global_block.vars:
fetch_var = global_block.var(fetch_var_name)
else:
fetch_var = global_block.create_var(
name=fetch_var_name,
type=core.VarDesc.VarType.FETCH_LIST,
persistable=True)
# prepend feed operators
if not _has_feed_operators(global_block, feed, feed_var_name):
for i, name in enumerate(feed):
out = global_block.var(name)
global_block._prepend_op(
type='feed',
inputs={'X': [feed_var]},
outputs={'Out': [out]},
attrs={'col': i})
# append fetch_operators
if not _has_fetch_operators(global_block, fetch_list, fetch_var_name):
for i, var in enumerate(fetch_list):
assert isinstance(var, Variable) or isinstance(
var, six.string_types), ("Wrong type for fetch_list[%s]: %s" %
(i, type(var)))
global_block.append_op(
type='fetch',
inputs={'X': [var]},
outputs={'Out': [fetch_var]},
attrs={'col': i})
return tmp_program
def add_feed_fetch_op(program, feed, fetch_list, scope, place):
if program is None:
program = default_main_program()
program = _add_feed_fetch_ops(
program=program, feed=feed, fetch_list=fetch_list)
return program
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册