提交 6efbe2ff 编写于 作者: H hedaoyuan

Merge im2col functor.

上级 47eb8691
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "Im2Col.h"
namespace paddle {
/*
* imShape = [inputChannels, inputHeight, inputWidth]
* colShape =
* [inputChannels, filterHeight, filterWidth, outputHeight, outputWidth]
*/
template <class T>
class Im2ColFunctor<kCFO, DEVICE_TYPE_CPU, T> {
public:
void operator()(const T* imData, const TensorShape& imShape, T* colData,
const TensorShape& colShape, int strideHeight,
int strideWidth, int paddingHeight, int paddingWidth) {
int inputChannels = imShape[0];
int inputHeight = imShape[1];
int inputWidth = imShape[2];
int filterHeight = colShape[1];
int filterWidth = colShape[2];
int outputHeight = colShape[3];
int outputWidth = colShape[4];
int channelsCol = inputChannels * filterHeight * filterWidth;
for (int c = 0; c < channelsCol; ++c) {
int wOffset = c % filterWidth;
int hOffset = (c / filterWidth) % filterHeight;
int c_im = c / filterWidth / filterHeight;
for (int h = 0; h < outputHeight; ++h) {
for (int w = 0; w < outputWidth; ++w) {
int imRowIdx = h * strideHeight + hOffset;
int imColIdx = w * strideWidth + wOffset;
if ((imRowIdx - paddingHeight) < 0 ||
(imRowIdx - paddingHeight) >= inputHeight ||
(imColIdx - paddingWidth) < 0 ||
(imColIdx - paddingWidth) >= inputWidth) {
colData[(c * outputHeight + h) * outputWidth + w] = T(0);
} else {
imRowIdx += c_im * inputHeight - paddingHeight;
imColIdx -= paddingWidth;
colData[(c * outputHeight + h) * outputWidth + w] =
imData[imRowIdx * inputWidth + imColIdx];
}
}
}
}
}
};
/*
* imShape = [inputChannels, inputHeight, inputWidth]
* colShape =
* [inputChannels, filterHeight, filterWidth, outputHeight, outputWidth]
*/
template <class T>
class Col2ImFunctor<kCFO, DEVICE_TYPE_CPU, T> {
public:
void operator()(T* imData, const TensorShape& imShape, const T* colData,
const TensorShape& colShape, int strideHeight,
int strideWidth, int paddingHeight, int paddingWidth) {
int inputChannels = imShape[0];
int inputHeight = imShape[1];
int inputWidth = imShape[2];
int filterHeight = colShape[1];
int filterWidth = colShape[2];
int outputHeight = colShape[3];
int outputWidth = colShape[4];
int channelsCol = inputChannels * filterHeight * filterWidth;
for (int c = 0; c < channelsCol; ++c) {
int wOffset = c % filterWidth;
int hOffset = (c / filterWidth) % filterHeight;
int c_im = c / filterWidth / filterHeight;
for (int h = 0; h < outputHeight; ++h) {
for (int w = 0; w < outputWidth; ++w) {
int imRowIdx = h * strideHeight + hOffset;
int imColIdx = w * strideWidth + wOffset;
if ((imRowIdx - paddingHeight) >= 0 &&
(imRowIdx - paddingHeight) < inputHeight &&
(imColIdx - paddingWidth) >= 0 &&
(imColIdx - paddingWidth) < inputWidth) {
imRowIdx += c_im * inputHeight - paddingHeight;
imColIdx -= paddingWidth;
imData[imRowIdx * inputWidth + imColIdx] +=
colData[(c * outputHeight + h) * outputWidth + w];
}
}
}
}
}
};
template class Im2ColFunctor<kCFO, DEVICE_TYPE_CPU, float>;
template class Im2ColFunctor<kCFO, DEVICE_TYPE_CPU, double>;
template class Col2ImFunctor<kCFO, DEVICE_TYPE_CPU, float>;
template class Col2ImFunctor<kCFO, DEVICE_TYPE_CPU, double>;
/*
* imShape = [inputChannels, inputHeight, inputWidth]
* colShape =
* [outputHeight, outputWidth, inputChannels, filterHeight, filterWidth]
*/
template <class T>
class Im2ColFunctor<kOCF, DEVICE_TYPE_CPU, T> {
public:
void operator()(const T* imData, const TensorShape& imShape, T* colData,
const TensorShape& colShape, int strideHeight,
int strideWidth, int paddingHeight, int paddingWidth) {
int inputChannels = imShape[0];
int inputHeight = imShape[1];
int inputWidth = imShape[2];
int filterHeight = colShape[3];
int filterWidth = colShape[4];
int outputHeight = colShape[0];
int outputWidth = colShape[1];
for (int outputH = 0; outputH < outputHeight; ++outputH) {
for (int outputW = 0; outputW < outputWidth; ++outputW) {
for (int channel = 0; channel < inputChannels; ++channel) {
for (int filterH = 0; filterH < filterHeight; ++filterH) {
for (int filterW = 0; filterW < filterWidth; ++filterW) {
int imRowOffset =
outputH * strideHeight + filterH - paddingHeight;
int imColOffset = outputW * strideWidth + filterW - paddingWidth;
int colDataOffset =
(((outputH * outputWidth + outputW) * inputChannels +
channel) *
filterHeight +
filterH) *
filterWidth +
filterW;
if (imRowOffset < 0 || imRowOffset >= inputHeight ||
imColOffset < 0 || imColOffset >= inputWidth) {
colData[colDataOffset] = float(0);
} else {
int imDataOffset =
(channel * inputHeight + imRowOffset) * inputWidth +
imColOffset;
colData[colDataOffset] = imData[imDataOffset];
}
}
}
}
}
}
}
};
/*
* imShape = [inputChannels, inputHeight, inputWidth]
* colShape =
* [outputHeight, outputWidth, inputChannels, filterHeight, filterWidth]
*/
template <class T>
class Col2ImFunctor<kOCF, DEVICE_TYPE_CPU, T> {
public:
void operator()(T* imData, const TensorShape& imShape, const T* colData,
const TensorShape& colShape, int strideHeight,
int strideWidth, int paddingHeight, int paddingWidth) {
int inputChannels = imShape[0];
int inputHeight = imShape[1];
int inputWidth = imShape[2];
int filterHeight = colShape[3];
int filterWidth = colShape[4];
int outputHeight = colShape[0];
int outputWidth = colShape[1];
for (int outputH = 0; outputH < outputHeight; ++outputH) {
for (int outputW = 0; outputW < outputWidth; ++outputW) {
for (int channel = 0; channel < inputChannels; ++channel) {
for (int filterH = 0; filterH < filterHeight; ++filterH) {
for (int filterW = 0; filterW < filterWidth; ++filterW) {
int imRowOffset =
outputH * strideHeight + filterH - paddingHeight;
int imColOffset = outputW * strideWidth + filterW - paddingWidth;
int colDataOffset =
(((outputH * outputWidth + outputW) * inputChannels +
channel) *
filterHeight +
filterH) *
filterWidth +
filterW;
if (imRowOffset >= 0 && imRowOffset < inputHeight &&
imColOffset >= 0 && imColOffset < inputWidth) {
int imDataOffset =
(channel * inputHeight + imRowOffset) * inputWidth +
imColOffset;
imData[imDataOffset] += colData[colDataOffset];
}
}
}
}
}
}
}
};
template class Im2ColFunctor<kOCF, DEVICE_TYPE_CPU, float>;
template class Im2ColFunctor<kOCF, DEVICE_TYPE_CPU, double>;
template class Col2ImFunctor<kOCF, DEVICE_TYPE_CPU, float>;
template class Col2ImFunctor<kOCF, DEVICE_TYPE_CPU, double>;
} // namespace paddle
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "Im2Col.h"
#include "hl_device_functions.cuh"
namespace paddle {
template <class T>
__global__ void im2col(const T* data_im, int numOuts, int height, int width,
int blockH, int blockW, int strideH, int strideW,
int paddingH, int paddingW, int height_col,
int width_col, T* data_col) {
int index = (blockIdx.x * gridDim.y + blockIdx.y) * blockDim.x + threadIdx.x;
if (index < numOuts) {
int w_out = index % width_col;
index /= width_col;
int h_out = index % height_col;
int channel_in = index / height_col;
int channel_out = channel_in * blockH * blockW;
int h_in = h_out * strideH;
int w_in = w_out * strideW;
data_col += (channel_out * height_col + h_out) * width_col + w_out;
for (int i = 0; i < blockH; ++i) {
for (int j = 0; j < blockW; ++j) {
int rIdx = int(h_in + i);
int cIdx = int(w_in + j);
if ((rIdx - (int)paddingH) >= (int)height ||
(rIdx - (int)paddingH) < 0 ||
(cIdx - (int)paddingW) >= (int)width ||
(cIdx - (int)paddingW) < 0) {
*data_col = 0;
} else {
rIdx = rIdx + channel_in * height - paddingH;
cIdx = cIdx - paddingW;
*data_col = data_im[rIdx * width + cIdx];
}
data_col += height_col * width_col;
}
}
}
}
/*
* imShape = [inputChannels, inputHeight, inputWidth]
* colShape =
* [inputChannels, filterHeight, filterWidth, outputHeight, outputWidth]
*/
template <class T>
class Im2ColFunctor<kCFO, DEVICE_TYPE_GPU, T> {
public:
void operator()(const T* imData, const TensorShape& imShape, T* colData,
const TensorShape& colShape, int strideHeight,
int strideWidth, int paddingHeight, int paddingWidth) {
int inputChannels = imShape[0];
int inputHeight = imShape[1];
int inputWidth = imShape[2];
int filterHeight = colShape[1];
int filterWidth = colShape[2];
int outputHeight = colShape[3];
int outputWidth = colShape[4];
int numKernels = inputChannels * outputHeight * outputWidth;
int blocks = (numKernels + 1024 - 1) / 1024;
int blockX = 512;
int blockY = (blocks + 512 - 1) / 512;
dim3 threads(1024, 1);
dim3 grid(blockX, blockY);
im2col<T><<<grid, threads, 0, STREAM_DEFAULT>>>(
imData, numKernels, inputHeight, inputWidth, filterHeight, filterWidth,
strideHeight, strideWidth, paddingHeight, paddingWidth, outputHeight,
outputWidth, colData);
CHECK_SYNC("Im2ColFunctor GPU failed");
}
};
template <class T>
__global__ void col2im(size_t n, const T* data_col, size_t height, size_t width,
size_t channels, size_t blockH, size_t blockW,
size_t strideH, size_t strideW, size_t paddingH,
size_t paddingW, size_t height_col, size_t width_col,
T* data_im) {
size_t index =
(blockIdx.x * gridDim.y + blockIdx.y) * blockDim.x + threadIdx.x;
if (index < n) {
T val = 0;
int w = int(index % width);
int h = int((index / width) % height);
int c = int(index / (width * height));
if ((w - (int)paddingW) >= 0 &&
(w - (int)paddingW) < (width - 2 * paddingW) &&
(h - (int)paddingH) >= 0 && (h - paddingH) < (height - 2 * paddingH)) {
// compute the start and end of the output
int w_col_start =
(w < (int)blockW) ? 0 : (w - int(blockW)) / (int)strideW + 1;
int w_col_end = min((int)(w / (int)strideW + 1), (int)(width_col));
int h_col_start =
(h < (int)blockH) ? 0 : (h - (int)blockH) / (int)strideH + 1;
int h_col_end = min(int(h / strideH + 1), int(height_col));
for (int h_col = h_col_start; h_col < h_col_end; ++h_col) {
for (int w_col = w_col_start; w_col < w_col_end; ++w_col) {
// the col location: [c * width * height + h_out, w_out]
int c_col = int(c * blockH * blockW) +
(h - h_col * (int)strideH) * (int)blockW +
(w - w_col * (int)strideW);
val += data_col[(c_col * height_col + h_col) * width_col + w_col];
}
}
h -= paddingH;
w -= paddingW;
data_im[c * ((width - 2 * paddingW) * (height - 2 * paddingH)) +
h * (width - 2 * paddingW) + w] += val;
}
}
}
/*
* imShape = [inputChannels, inputHeight, inputWidth]
* colShape =
* [inputChannels, filterHeight, filterWidth, outputHeight, outputWidth]
*/
template <class T>
class Col2ImFunctor<kCFO, DEVICE_TYPE_GPU, T> {
public:
void operator()(T* imData, const TensorShape& imShape, const T* colData,
const TensorShape& colShape, int strideHeight,
int strideWidth, int paddingHeight, int paddingWidth) {
int inputChannels = imShape[0];
int inputHeight = imShape[1];
int inputWidth = imShape[2];
int filterHeight = colShape[1];
int filterWidth = colShape[2];
int outputHeight = colShape[3];
int outputWidth = colShape[4];
size_t numKernels = inputChannels * (inputHeight + 2 * paddingHeight) *
(inputWidth + 2 * paddingWidth);
size_t blocks = (numKernels + 1024 - 1) / 1024;
size_t blockX = 512;
size_t blockY = (blocks + 512 - 1) / 512;
dim3 threads(1024, 1);
dim3 grid(blockX, blockY);
// To avoid involving atomic operations, we will launch one kernel per
// bottom dimension, and then in the kernel add up the top dimensions.
col2im<T><<<grid, threads, 0, STREAM_DEFAULT>>>(
numKernels, colData, inputHeight + 2 * paddingHeight,
inputWidth + 2 * paddingWidth, inputChannels, filterHeight, filterWidth,
strideHeight, strideWidth, paddingHeight, paddingWidth, outputHeight,
outputWidth, imData);
CHECK_SYNC("Col2ImFunctor GPU failed");
}
};
template class Im2ColFunctor<kCFO, DEVICE_TYPE_GPU, float>;
template class Im2ColFunctor<kCFO, DEVICE_TYPE_GPU, double>;
template class Col2ImFunctor<kCFO, DEVICE_TYPE_GPU, float>;
template class Col2ImFunctor<kCFO, DEVICE_TYPE_GPU, double>;
template <class T>
__global__ void im2colOCF(const T* imData, T* colData, int inputChannels,
int inputHeight, int inputWidth, int filterHeight,
int filterWidth, int strideHeight, int strideWidth,
int paddingHeight, int paddingWidth, int outputHeight,
int outputWidth) {
int swId = blockIdx.x;
int shId = blockIdx.y;
for (int channelId = threadIdx.z; channelId < inputChannels;
channelId += blockDim.z) {
for (int idy = threadIdx.y; idy < filterHeight; idy += blockDim.y) {
for (int idx = threadIdx.x; idx < filterWidth; idx += blockDim.x) {
int widthOffset = idx + swId * strideWidth - paddingWidth;
int heightOffset = idy + shId * strideHeight - paddingHeight;
int imOffset = widthOffset + heightOffset * inputWidth +
channelId * inputHeight * inputWidth;
int colOffset = idx + idy * filterWidth +
channelId * filterHeight * filterWidth +
(shId * outputWidth + swId) *
(inputChannels * filterHeight * filterWidth);
if (heightOffset >= inputHeight || heightOffset < 0 ||
widthOffset >= inputWidth || widthOffset < 0) {
colData[colOffset] = T(0);
} else {
colData[colOffset] = imData[imOffset];
}
}
}
}
}
/*
* imShape = [inputChannels, inputHeight, inputWidth]
* colShape =
* [outputHeight, outputWidth, inputChannels, filterHeight, filterWidth]
*/
template <class T>
class Im2ColFunctor<kOCF, DEVICE_TYPE_GPU, T> {
public:
void operator()(const T* imData, const TensorShape& imShape, T* colData,
const TensorShape& colShape, int strideHeight,
int strideWidth, int paddingHeight, int paddingWidth) {
int inputChannels = imShape[0];
int inputHeight = imShape[1];
int inputWidth = imShape[2];
int filterHeight = colShape[3];
int filterWidth = colShape[4];
int outputHeight = colShape[0];
int outputWidth = colShape[1];
int blockDimX = 0;
int blockDimY = 0;
if (filterHeight <= 4 && filterWidth <= 4) {
blockDimX = 4;
blockDimY = 4;
} else if (filterHeight <= 8 && filterWidth <= 8) {
blockDimX = 8;
blockDimY = 8;
} else if (filterHeight <= 16 && filterWidth <= 16) {
blockDimX = 16;
blockDimY = 16;
} else {
blockDimX = 32;
blockDimY = 32;
}
int blockDimZ = 1024 / blockDimX / blockDimY;
dim3 threads(blockDimX, blockDimY, std::min(blockDimZ, inputChannels));
dim3 grid(outputWidth, outputHeight);
im2colOCF<T><<<grid, threads, 0, STREAM_DEFAULT>>>(
imData, colData, inputChannels, inputHeight, inputWidth, filterHeight,
filterWidth, strideHeight, strideWidth, paddingHeight, paddingWidth,
outputHeight, outputWidth);
CHECK_SYNC("Im2ColFunctor GPU failed");
}
};
template <class T>
__global__ void col2imOCF(T* imData, const T* colData, int inputChannels,
int inputHeight, int inputWidth, int filterHeight,
int filterWidth, int strideHeight, int strideWidth,
int paddingHeight, int paddingWidth, int outputHeight,
int outputWidth) {
int swId = blockIdx.x;
int shId = blockIdx.y;
for (int channelId = threadIdx.z; channelId < inputChannels;
channelId += blockDim.z) {
for (int idy = threadIdx.y; idy < filterHeight; idy += blockDim.y) {
for (int idx = threadIdx.x; idx < filterWidth; idx += blockDim.x) {
int widthOffset = idx + swId * strideWidth - paddingWidth;
int heightOffset = idy + shId * strideHeight - paddingHeight;
int imOffset = widthOffset + heightOffset * inputWidth +
channelId * inputHeight * inputWidth;
int colOffset = idx + idy * filterWidth +
channelId * filterHeight * filterWidth +
(shId * outputWidth + swId) *
(inputChannels * filterHeight * filterWidth);
if (heightOffset >= 0 && heightOffset < inputHeight &&
widthOffset >= 0 && widthOffset < inputWidth) {
paddle::paddleAtomicAdd(imData + imOffset, colData[colOffset]);
}
}
}
}
}
/*
* imShape = [inputChannels, inputHeight, inputWidth]
* colShape =
* [outputHeight, outputWidth, inputChannels, filterHeight, filterWidth]
*/
template <class T>
class Col2ImFunctor<kOCF, DEVICE_TYPE_GPU, T> {
public:
void operator()(T* imData, const TensorShape& imShape, const T* colData,
const TensorShape& colShape, int strideHeight,
int strideWidth, int paddingHeight, int paddingWidth) {
int inputChannels = imShape[0];
int inputHeight = imShape[1];
int inputWidth = imShape[2];
int filterHeight = colShape[3];
int filterWidth = colShape[4];
int outputHeight = colShape[0];
int outputWidth = colShape[1];
int blockDimX = 0;
int blockDimY = 0;
if (filterHeight <= 4 && filterWidth <= 4) {
blockDimX = 4;
blockDimY = 4;
} else if (filterHeight <= 8 && filterWidth <= 8) {
blockDimX = 8;
blockDimY = 8;
} else if (filterHeight <= 16 && filterWidth <= 16) {
blockDimX = 16;
blockDimY = 16;
} else {
blockDimX = 32;
blockDimY = 32;
}
int blockDimZ = 1024 / blockDimX / blockDimY;
dim3 threads(blockDimX, blockDimY, std::min(blockDimZ, inputChannels));
dim3 grid(outputWidth, outputHeight);
col2imOCF<T><<<grid, threads, 0, STREAM_DEFAULT>>>(
imData, colData, inputChannels, inputHeight, inputWidth, filterHeight,
filterWidth, strideHeight, strideWidth, paddingHeight, paddingWidth,
outputHeight, outputWidth);
CHECK_SYNC("Col2ImFunctor GPU failed");
}
};
template class Im2ColFunctor<kOCF, DEVICE_TYPE_GPU, float>;
template class Im2ColFunctor<kOCF, DEVICE_TYPE_GPU, double>;
template class Col2ImFunctor<kOCF, DEVICE_TYPE_GPU, float>;
template class Col2ImFunctor<kOCF, DEVICE_TYPE_GPU, double>;
} // namespace paddle
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include "TensorShape.h"
#include "TensorType.h"
namespace paddle {
/* The storage format of the coldata in the Im2ColFunctor and Col2ImFunctor. */
enum ColFormat { kCFO = 0, kOCF = 1 };
/*
* \brief Converts the image data of three dimensions(CHW) into a colData of
* five dimensions in the Im2ColFunctor calculation,
* And in the Col2ImFunctor calculation, it is reversed.
*
* \param imData Image data.
* \param imShape The shape of imData,
* [inputChannels, inputHeight, inputWidth].
* \param colData Column data.
* \param colShape The shape of colData.
*
* If the template argument Format is kCFO, the shape of colData is:
* [inputChannels, filterHeight, filterWidth, outputHeight, outputWidth]
* So, it is easy to reshape into a convolution matrix for convolution
* calculation based on matrix multiplication.
* The shape of convolution matrix is [height, width], where the height is equal
* inputChannels * filterHeight * filterWidth, and the width is equal
* outputHeight * outputWidth.
*
* Reshape:
* shape of colData shape of convolution matrix
* [inputChannels,
* filterHeight,
* filterWidth, ======> [height, width]
* outputHeight,
* outputWidth]
*
* If the template argument Format is kOCF, the shape of colData is:
* [outputHeight, outputWidth, inputChannels, filterHeight, filterWidth]
* So, it is easy to reshape into a sequence matrix for rnn calculation.
* The shape of sequence matrix is [seqLength, stepSize], where the seqLength
* is equal outputHeight * outputWidth, and the stepSize is equal
* inputChannels * filterHeight * filterWidth.
*
* Reshape:
* shape of colData shape of sequence matrix
* [outputHeight,
* outputWidth,
* inputChannels, ======> [seqLength, stepSize]
* filterHeight,
* filterWidth]
*
* \note The caller needs to ensure that imShape.inputChannels is equal to
* colShape.inputChannels.
*/
template <ColFormat Format, DeviceType Device, class T>
class Im2ColFunctor {
public:
void operator()(const T* imData, const TensorShape& imShape, T* colData,
const TensorShape& colShape, int strideHeight,
int strideWidth, int paddingHeight, int paddingWidth);
};
template <ColFormat Format, DeviceType Device, class T>
class Col2ImFunctor {
public:
void operator()(T* imData, const TensorShape& imShape, const T* colData,
const TensorShape& colShape, int strideHeight,
int strideWidth, int paddingHeight, int paddingWidth);
};
} // namespace paddle
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册