Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleDetection
提交
6e018b8e
P
PaddleDetection
项目概览
PaddlePaddle
/
PaddleDetection
大约 1 年 前同步成功
通知
695
Star
11112
Fork
2696
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
184
列表
看板
标记
里程碑
合并请求
40
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
184
Issue
184
列表
看板
标记
里程碑
合并请求
40
合并请求
40
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
6e018b8e
编写于
1月 15, 2021
作者:
F
Feng Ni
提交者:
GitHub
1月 15, 2021
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
[Dygraph] add FCOS-DCN (#2066)
* add fcos dcn mstrain doc and config * add dcn on resnet and head * clean code
上级
e333d629
变更
5
隐藏空白更改
内联
并排
Showing
5 changed file
with
221 addition
and
27 deletion
+221
-27
dygraph/configs/fcos/README.md
dygraph/configs/fcos/README.md
+2
-0
dygraph/configs/fcos/fcos_dcn_r50_fpn_1x_coco.yml
dygraph/configs/fcos/fcos_dcn_r50_fpn_1x_coco.yml
+32
-0
dygraph/configs/fcos/fcos_r50_fpn_multiscale_2x_coco.yml
dygraph/configs/fcos/fcos_r50_fpn_multiscale_2x_coco.yml
+43
-0
dygraph/ppdet/modeling/backbones/resnet.py
dygraph/ppdet/modeling/backbones/resnet.py
+40
-14
dygraph/ppdet/modeling/layers.py
dygraph/ppdet/modeling/layers.py
+104
-13
未找到文件。
dygraph/configs/fcos/README.md
浏览文件 @
6e018b8e
...
@@ -13,6 +13,8 @@ FCOS (Fully Convolutional One-Stage Object Detection) is a fast anchor-free obje
...
@@ -13,6 +13,8 @@ FCOS (Fully Convolutional One-Stage Object Detection) is a fast anchor-free obje
| 骨架网络 | 网络类型 | 每张GPU图片个数 | 学习率策略 |推理时间(fps) | Box AP | 下载 | 配置文件 |
| 骨架网络 | 网络类型 | 每张GPU图片个数 | 学习率策略 |推理时间(fps) | Box AP | 下载 | 配置文件 |
| :-------------- | :------------- | :-----: | :-----: | :------------: | :-----: | :-----------------------------------------------------: | :-----: |
| :-------------- | :------------- | :-----: | :-----: | :------------: | :-----: | :-----------------------------------------------------: | :-----: |
| ResNet50-FPN | FCOS | 2 | 1x | ---- | 39.6 |
[
下载链接
](
https://paddlemodels.bj.bcebos.com/object_detection/dygraph/fcos_r50_fpn_1x_coco.pdparams
)
|
[
配置文件
](
https://github.com/PaddlePaddle/PaddleDetection/tree/dygraph/configs/fcos/fcos_r50_fpn_1x_coco.yml
)
|
| ResNet50-FPN | FCOS | 2 | 1x | ---- | 39.6 |
[
下载链接
](
https://paddlemodels.bj.bcebos.com/object_detection/dygraph/fcos_r50_fpn_1x_coco.pdparams
)
|
[
配置文件
](
https://github.com/PaddlePaddle/PaddleDetection/tree/dygraph/configs/fcos/fcos_r50_fpn_1x_coco.yml
)
|
| ResNet50-FPN | FCOS+DCN | 2 | 1x | ---- | 44.3 |
[
下载链接
](
https://paddlemodels.bj.bcebos.com/object_detection/dygraph/fcos_dcn_r50_fpn_1x_coco.pdparams
)
|
[
配置文件
](
https://github.com/PaddlePaddle/PaddleDetection/tree/dygraph/configs/fcos/fcos_dcn_r50_fpn_1x_coco.yml
)
|
| ResNet50-FPN | FCOS+multiscale_train | 2 | 2x | ---- | 42.0 |
[
下载链接
](
https://paddlemodels.bj.bcebos.com/object_detection/dygraph/fcos_r50_fpn_multiscale_2x_coco.pdparams
)
|
[
配置文件
](
https://github.com/PaddlePaddle/PaddleDetection/tree/dygraph/configs/fcos/fcos_r50_fpn_multiscale_2x_coco.yml
)
|
**Notes:**
**Notes:**
...
...
dygraph/configs/fcos/fcos_dcn_r50_fpn_1x_coco.yml
0 → 100644
浏览文件 @
6e018b8e
_BASE_
:
[
'
../datasets/coco_detection.yml'
,
'
../runtime.yml'
,
'
_base_/fcos_r50_fpn.yml'
,
'
_base_/optimizer_1x.yml'
,
'
_base_/fcos_reader.yml'
,
]
weights
:
output/fcos_dcn_r50_fpn_1x_coco/model_final
ResNet
:
depth
:
50
norm_type
:
bn
freeze_at
:
0
return_idx
:
[
1
,
2
,
3
]
num_stages
:
4
dcn_v2_stages
:
[
1
,
2
,
3
]
FCOSHead
:
fcos_feat
:
name
:
FCOSFeat
feat_in
:
256
feat_out
:
256
num_convs
:
4
norm_type
:
"
gn"
use_dcn
:
true
num_classes
:
80
fpn_stride
:
[
8
,
16
,
32
,
64
,
128
]
prior_prob
:
0.01
fcos_loss
:
FCOSLoss
norm_reg_targets
:
true
centerness_on_reg
:
true
dygraph/configs/fcos/fcos_r50_fpn_multiscale_2x_coco.yml
0 → 100644
浏览文件 @
6e018b8e
_BASE_
:
[
'
../datasets/coco_detection.yml'
,
'
../runtime.yml'
,
'
_base_/fcos_r50_fpn.yml'
,
'
_base_/optimizer_1x.yml'
,
'
_base_/fcos_reader.yml'
,
]
weights
:
output/fcos_r50_fpn_multiscale_2x_coco/model_final
TrainReader
:
sample_transforms
:
-
DecodeOp
:
{}
-
RandomFlipOp
:
{
prob
:
0.5
}
-
NormalizeImageOp
:
{
is_scale
:
true
,
mean
:
[
0.485
,
0.456
,
0.406
],
std
:
[
0.229
,
0.224
,
0.225
]}
-
ResizeImage
:
target_size
:
[
640
,
672
,
704
,
736
,
768
,
800
]
max_size
:
1333
interp
:
1
use_cv2
:
true
-
PermuteOp
:
{}
batch_transforms
:
-
PadBatchOp
:
{
pad_to_stride
:
128
}
-
Gt2FCOSTarget
:
object_sizes_boundary
:
[
64
,
128
,
256
,
512
]
center_sampling_radius
:
1.5
downsample_ratios
:
[
8
,
16
,
32
,
64
,
128
]
norm_reg_targets
:
True
batch_size
:
2
shuffle
:
true
drop_last
:
true
epoch
:
24
LearningRate
:
base_lr
:
0.01
schedulers
:
-
!PiecewiseDecay
gamma
:
0.1
milestones
:
[
16
,
22
]
-
!LinearWarmup
start_factor
:
0.3333333333333333
steps
:
500
dygraph/ppdet/modeling/backbones/resnet.py
浏览文件 @
6e018b8e
...
@@ -25,6 +25,7 @@ from ppdet.core.workspace import register, serializable
...
@@ -25,6 +25,7 @@ from ppdet.core.workspace import register, serializable
from
paddle.regularizer
import
L2Decay
from
paddle.regularizer
import
L2Decay
from
.name_adapter
import
NameAdapter
from
.name_adapter
import
NameAdapter
from
numbers
import
Integral
from
numbers
import
Integral
from
ppdet.modeling.layers
import
DeformableConvV2
__all__
=
[
'ResNet'
,
'Res5Head'
]
__all__
=
[
'ResNet'
,
'Res5Head'
]
...
@@ -41,22 +42,36 @@ class ConvNormLayer(nn.Layer):
...
@@ -41,22 +42,36 @@ class ConvNormLayer(nn.Layer):
norm_decay
=
0.
,
norm_decay
=
0.
,
freeze_norm
=
True
,
freeze_norm
=
True
,
lr
=
1.0
,
lr
=
1.0
,
dcn_v2
=
False
,
name
=
None
):
name
=
None
):
super
(
ConvNormLayer
,
self
).
__init__
()
super
(
ConvNormLayer
,
self
).
__init__
()
assert
norm_type
in
[
'bn'
,
'sync_bn'
]
assert
norm_type
in
[
'bn'
,
'sync_bn'
]
self
.
norm_type
=
norm_type
self
.
norm_type
=
norm_type
self
.
act
=
act
self
.
act
=
act
self
.
conv
=
Conv2D
(
if
not
dcn_v2
:
in_channels
=
ch_in
,
self
.
conv
=
Conv2D
(
out_channels
=
ch_out
,
in_channels
=
ch_in
,
kernel_size
=
filter_size
,
out_channels
=
ch_out
,
stride
=
stride
,
kernel_size
=
filter_size
,
padding
=
(
filter_size
-
1
)
//
2
,
stride
=
stride
,
groups
=
1
,
padding
=
(
filter_size
-
1
)
//
2
,
weight_attr
=
ParamAttr
(
groups
=
1
,
learning_rate
=
lr
,
name
=
name
+
"_weights"
),
weight_attr
=
ParamAttr
(
bias_attr
=
False
)
learning_rate
=
lr
,
name
=
name
+
"_weights"
),
bias_attr
=
False
)
else
:
self
.
conv
=
DeformableConvV2
(
in_channels
=
ch_in
,
out_channels
=
ch_out
,
kernel_size
=
filter_size
,
stride
=
stride
,
padding
=
(
filter_size
-
1
)
//
2
,
groups
=
1
,
weight_attr
=
ParamAttr
(
learning_rate
=
lr
,
name
=
name
+
'_weights'
),
bias_attr
=
False
,
name
=
name
)
bn_name
=
name_adapter
.
fix_conv_norm_name
(
name
)
bn_name
=
name_adapter
.
fix_conv_norm_name
(
name
)
norm_lr
=
0.
if
freeze_norm
else
lr
norm_lr
=
0.
if
freeze_norm
else
lr
...
@@ -105,7 +120,8 @@ class BottleNeck(nn.Layer):
...
@@ -105,7 +120,8 @@ class BottleNeck(nn.Layer):
lr
=
1.0
,
lr
=
1.0
,
norm_type
=
'bn'
,
norm_type
=
'bn'
,
norm_decay
=
0.
,
norm_decay
=
0.
,
freeze_norm
=
True
):
freeze_norm
=
True
,
dcn_v2
=
False
):
super
(
BottleNeck
,
self
).
__init__
()
super
(
BottleNeck
,
self
).
__init__
()
if
variant
==
'a'
:
if
variant
==
'a'
:
stride1
,
stride2
=
stride
,
1
stride1
,
stride2
=
stride
,
1
...
@@ -153,6 +169,7 @@ class BottleNeck(nn.Layer):
...
@@ -153,6 +169,7 @@ class BottleNeck(nn.Layer):
norm_decay
=
norm_decay
,
norm_decay
=
norm_decay
,
freeze_norm
=
freeze_norm
,
freeze_norm
=
freeze_norm
,
lr
=
lr
,
lr
=
lr
,
dcn_v2
=
dcn_v2
,
name
=
conv_name2
)
name
=
conv_name2
)
self
.
branch2c
=
ConvNormLayer
(
self
.
branch2c
=
ConvNormLayer
(
...
@@ -193,7 +210,8 @@ class Blocks(nn.Layer):
...
@@ -193,7 +210,8 @@ class Blocks(nn.Layer):
lr
=
1.0
,
lr
=
1.0
,
norm_type
=
'bn'
,
norm_type
=
'bn'
,
norm_decay
=
0.
,
norm_decay
=
0.
,
freeze_norm
=
True
):
freeze_norm
=
True
,
dcn_v2
=
False
):
super
(
Blocks
,
self
).
__init__
()
super
(
Blocks
,
self
).
__init__
()
self
.
blocks
=
[]
self
.
blocks
=
[]
...
@@ -213,7 +231,8 @@ class Blocks(nn.Layer):
...
@@ -213,7 +231,8 @@ class Blocks(nn.Layer):
lr
=
lr
,
lr
=
lr
,
norm_type
=
norm_type
,
norm_type
=
norm_type
,
norm_decay
=
norm_decay
,
norm_decay
=
norm_decay
,
freeze_norm
=
freeze_norm
))
freeze_norm
=
freeze_norm
,
dcn_v2
=
dcn_v2
))
self
.
blocks
.
append
(
block
)
self
.
blocks
.
append
(
block
)
def
forward
(
self
,
inputs
):
def
forward
(
self
,
inputs
):
...
@@ -238,6 +257,7 @@ class ResNet(nn.Layer):
...
@@ -238,6 +257,7 @@ class ResNet(nn.Layer):
freeze_norm
=
True
,
freeze_norm
=
True
,
freeze_at
=
0
,
freeze_at
=
0
,
return_idx
=
[
0
,
1
,
2
,
3
],
return_idx
=
[
0
,
1
,
2
,
3
],
dcn_v2_stages
=
[
-
1
],
num_stages
=
4
):
num_stages
=
4
):
super
(
ResNet
,
self
).
__init__
()
super
(
ResNet
,
self
).
__init__
()
self
.
depth
=
depth
self
.
depth
=
depth
...
@@ -255,6 +275,11 @@ class ResNet(nn.Layer):
...
@@ -255,6 +275,11 @@ class ResNet(nn.Layer):
self
.
return_idx
=
return_idx
self
.
return_idx
=
return_idx
self
.
num_stages
=
num_stages
self
.
num_stages
=
num_stages
if
isinstance
(
dcn_v2_stages
,
Integral
):
dcn_v2_stages
=
[
dcn_v2_stages
]
assert
max
(
dcn_v2_stages
)
<
num_stages
self
.
dcn_v2_stages
=
dcn_v2_stages
block_nums
=
ResNet_cfg
[
depth
]
block_nums
=
ResNet_cfg
[
depth
]
na
=
NameAdapter
(
self
)
na
=
NameAdapter
(
self
)
...
@@ -304,7 +329,8 @@ class ResNet(nn.Layer):
...
@@ -304,7 +329,8 @@ class ResNet(nn.Layer):
lr
=
lr_mult
,
lr
=
lr_mult
,
norm_type
=
norm_type
,
norm_type
=
norm_type
,
norm_decay
=
norm_decay
,
norm_decay
=
norm_decay
,
freeze_norm
=
freeze_norm
))
freeze_norm
=
freeze_norm
,
dcn_v2
=
(
i
in
self
.
dcn_v2_stages
)))
self
.
res_layers
.
append
(
res_layer
)
self
.
res_layers
.
append
(
res_layer
)
def
forward
(
self
,
inputs
):
def
forward
(
self
,
inputs
):
...
...
dygraph/ppdet/modeling/layers.py
浏览文件 @
6e018b8e
...
@@ -30,6 +30,7 @@ from ppdet.core.workspace import register, serializable
...
@@ -30,6 +30,7 @@ from ppdet.core.workspace import register, serializable
from
ppdet.py_op.target
import
generate_rpn_anchor_target
,
generate_proposal_target
,
generate_mask_target
from
ppdet.py_op.target
import
generate_rpn_anchor_target
,
generate_proposal_target
,
generate_mask_target
from
ppdet.py_op.post_process
import
bbox_post_process
from
ppdet.py_op.post_process
import
bbox_post_process
from
.
import
ops
from
.
import
ops
from
paddle.vision.ops
import
DeformConv2D
def
_to_list
(
l
):
def
_to_list
(
l
):
...
@@ -38,6 +39,77 @@ def _to_list(l):
...
@@ -38,6 +39,77 @@ def _to_list(l):
return
[
l
]
return
[
l
]
class
DeformableConvV2
(
nn
.
Layer
):
def
__init__
(
self
,
in_channels
,
out_channels
,
kernel_size
,
stride
=
1
,
padding
=
0
,
dilation
=
1
,
groups
=
1
,
weight_attr
=
None
,
bias_attr
=
None
,
lr_scale
=
1
,
regularizer
=
None
,
name
=
None
):
super
(
DeformableConvV2
,
self
).
__init__
()
self
.
offset_channel
=
2
*
kernel_size
**
2
self
.
mask_channel
=
kernel_size
**
2
if
lr_scale
==
1
and
regularizer
is
None
:
offset_bias_attr
=
ParamAttr
(
initializer
=
Constant
(
0.
),
name
=
'{}._conv_offset.bias'
.
format
(
name
))
else
:
offset_bias_attr
=
ParamAttr
(
initializer
=
Constant
(
0.
),
learning_rate
=
lr_scale
,
regularizer
=
regularizer
,
name
=
'{}._conv_offset.bias'
.
format
(
name
))
self
.
conv_offset
=
nn
.
Conv2D
(
in_channels
,
3
*
kernel_size
**
2
,
kernel_size
,
stride
=
stride
,
padding
=
(
kernel_size
-
1
)
//
2
,
weight_attr
=
ParamAttr
(
initializer
=
Constant
(
0.0
),
name
=
'{}._conv_offset.weight'
.
format
(
name
)),
bias_attr
=
offset_bias_attr
)
if
bias_attr
:
# in FCOS-DCN head, specifically need learning_rate and regularizer
dcn_bias_attr
=
ParamAttr
(
name
=
name
+
"_bias"
,
initializer
=
Constant
(
value
=
0
),
regularizer
=
L2Decay
(
0.
),
learning_rate
=
2.
)
else
:
# in ResNet backbone, do not need bias
dcn_bias_attr
=
False
self
.
conv_dcn
=
DeformConv2D
(
in_channels
,
out_channels
,
kernel_size
,
stride
=
stride
,
padding
=
(
kernel_size
-
1
)
//
2
*
dilation
,
dilation
=
dilation
,
groups
=
groups
,
weight_attr
=
weight_attr
,
bias_attr
=
dcn_bias_attr
)
def
forward
(
self
,
x
):
offset_mask
=
self
.
conv_offset
(
x
)
offset
,
mask
=
paddle
.
split
(
offset_mask
,
num_or_sections
=
[
self
.
offset_channel
,
self
.
mask_channel
],
axis
=
1
)
mask
=
F
.
sigmoid
(
mask
)
y
=
self
.
conv_dcn
(
x
,
offset
,
mask
=
mask
)
return
y
class
ConvNormLayer
(
nn
.
Layer
):
class
ConvNormLayer
(
nn
.
Layer
):
def
__init__
(
self
,
def
__init__
(
self
,
ch_in
,
ch_in
,
...
@@ -62,19 +134,38 @@ class ConvNormLayer(nn.Layer):
...
@@ -62,19 +134,38 @@ class ConvNormLayer(nn.Layer):
else
:
else
:
bias_attr
=
False
bias_attr
=
False
self
.
conv
=
nn
.
Conv2D
(
if
not
use_dcn
:
in_channels
=
ch_in
,
self
.
conv
=
nn
.
Conv2D
(
out_channels
=
ch_out
,
in_channels
=
ch_in
,
kernel_size
=
filter_size
,
out_channels
=
ch_out
,
stride
=
stride
,
kernel_size
=
filter_size
,
padding
=
(
filter_size
-
1
)
//
2
,
stride
=
stride
,
groups
=
1
,
padding
=
(
filter_size
-
1
)
//
2
,
weight_attr
=
ParamAttr
(
groups
=
1
,
name
=
name
+
"_weight"
,
weight_attr
=
ParamAttr
(
initializer
=
Normal
(
name
=
name
+
"_weight"
,
mean
=
0.
,
std
=
0.01
),
initializer
=
Normal
(
learning_rate
=
1.
),
mean
=
0.
,
std
=
0.01
),
bias_attr
=
bias_attr
)
learning_rate
=
1.
),
bias_attr
=
bias_attr
)
else
:
# in FCOS-DCN head, specifically need learning_rate and regularizer
self
.
conv
=
DeformableConvV2
(
in_channels
=
ch_in
,
out_channels
=
ch_out
,
kernel_size
=
filter_size
,
stride
=
stride
,
padding
=
(
filter_size
-
1
)
//
2
,
groups
=
1
,
weight_attr
=
ParamAttr
(
name
=
name
+
"_weight"
,
initializer
=
Normal
(
mean
=
0.
,
std
=
0.01
),
learning_rate
=
1.
),
bias_attr
=
True
,
lr_scale
=
2.
,
regularizer
=
L2Decay
(
0.
),
name
=
name
)
param_attr
=
ParamAttr
(
param_attr
=
ParamAttr
(
name
=
norm_name
+
"_scale"
,
name
=
norm_name
+
"_scale"
,
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录