Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleDetection
提交
6db7c2a5
P
PaddleDetection
项目概览
PaddlePaddle
/
PaddleDetection
大约 1 年 前同步成功
通知
695
Star
11112
Fork
2696
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
184
列表
看板
标记
里程碑
合并请求
40
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
184
Issue
184
列表
看板
标记
里程碑
合并请求
40
合并请求
40
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
6db7c2a5
编写于
3月 29, 2019
作者:
W
wanghaoshuang
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Fix checkpoint of quantization.
上级
e41d5813
变更
2
隐藏空白更改
内联
并排
Showing
2 changed file
with
75 addition
and
31 deletion
+75
-31
python/paddle/fluid/contrib/slim/graph/graph_wrapper.py
python/paddle/fluid/contrib/slim/graph/graph_wrapper.py
+11
-2
python/paddle/fluid/contrib/slim/quantization/quantization_strategy.py
.../fluid/contrib/slim/quantization/quantization_strategy.py
+64
-29
未找到文件。
python/paddle/fluid/contrib/slim/graph/graph_wrapper.py
浏览文件 @
6db7c2a5
...
...
@@ -204,6 +204,10 @@ class GraphWrapper(object):
"""
super
(
GraphWrapper
,
self
).
__init__
()
self
.
program
=
Program
()
if
program
is
None
else
program
self
.
persistables
=
{}
for
var
in
self
.
program
.
list_vars
():
if
var
.
persistable
:
self
.
persistables
[
var
.
name
]
=
var
self
.
compiled_graph
=
None
self
.
in_nodes
=
OrderedDict
(
in_nodes
)
self
.
out_nodes
=
OrderedDict
(
out_nodes
)
...
...
@@ -467,7 +471,12 @@ class GraphWrapper(object):
path(str): The path to save the persistables.
exe(framework.Executor): The executor used to save the persistables.
"""
io
.
save_persistables
(
exe
.
exe
,
path
,
main_program
=
self
.
program
)
# update persistables from program
for
var
in
self
.
program
.
list_vars
():
if
var
.
persistable
and
var
.
name
not
in
self
.
persistables
:
self
.
persistables
[
var
.
name
]
=
var
io
.
save_vars
(
exe
.
exe
,
path
,
vars
=
self
.
persistables
.
values
())
def
load_persistables
(
self
,
path
,
exe
):
"""
...
...
@@ -481,7 +490,7 @@ class GraphWrapper(object):
return
os
.
path
.
exists
(
os
.
path
.
join
(
path
,
var
.
name
))
io
.
load_vars
(
exe
.
exe
,
path
,
main_program
=
self
.
program
,
predicate
=
if_exist
)
exe
.
exe
,
path
,
vars
=
self
.
persistables
.
values
()
,
predicate
=
if_exist
)
def
update_param_shape
(
self
,
scope
):
"""
...
...
python/paddle/fluid/contrib/slim/quantization/quantization_strategy.py
浏览文件 @
6db7c2a5
...
...
@@ -20,7 +20,7 @@ from .... import io
from
....
import
core
from
....compiler
import
CompiledProgram
from
....compiler
import
BuildStrategy
from
....framework
import
IrGraph
from
....framework
import
IrGraph
,
Variable
,
Program
from
..core.strategy
import
Strategy
from
.quantization_pass
import
*
...
...
@@ -84,40 +84,75 @@ class QuantizationStrategy(Strategy):
self
.
save_out_nodes
=
save_out_nodes
self
.
save_in_nodes
=
save_in_nodes
def
on_compression_begin
(
self
,
context
):
"""
Restore graph when the compressoin task is inited from checkpoint.
"""
# It is inited from checkpoint and has missed start epoch.
if
context
.
epoch_id
!=
0
and
context
.
epoch_id
>
self
.
start_epoch
:
_logger
.
info
(
"Restore quantization task from checkpoint"
)
self
.
_modify_graph_for_quantization
(
context
)
_logger
.
info
(
"Finish restoring quantization task from checkpoint"
)
def
_modify_graph_for_quantization
(
self
,
context
):
"""
Insert fake_quantize_op and fake_dequantize_op before trainging and testing.
"""
train_ir_graph
=
IrGraph
(
core
.
Graph
(
context
.
optimize_graph
.
program
.
clone
().
desc
),
for_test
=
False
)
test_ir_graph
=
IrGraph
(
core
.
Graph
(
context
.
eval_graph
.
program
.
clone
().
desc
),
for_test
=
True
)
transform_pass
=
QuantizationTransformPass
(
scope
=
context
.
scope
,
place
=
context
.
place
,
weight_bits
=
self
.
weight_bits
,
activation_bits
=
self
.
activation_bits
,
activation_quantize_type
=
self
.
activation_quantize_type
)
transform_pass
.
apply
(
train_ir_graph
)
transform_pass
.
apply
(
test_ir_graph
)
# Put persistables created by transform_pass into context.optimize_graph.persistables
# for saving checkpoint.
program_persistables
=
set
()
for
var
in
context
.
optimize_graph
.
program
.
list_vars
():
if
var
.
persistable
:
program_persistables
.
add
(
var
.
name
)
program
=
Program
()
for
var_node
in
train_ir_graph
.
all_persistable_nodes
():
if
var_node
.
name
()
not
in
program_persistables
:
var_desc
=
var_node
.
var
()
var
=
program
.
global_block
().
create_var
(
name
=
var_node
.
name
(),
shape
=
var_desc
.
shape
(),
dtype
=
var_desc
.
dtype
(),
type
=
var_desc
.
type
(),
lod_level
=
var_desc
.
lod_level
())
context
.
optimize_graph
.
persistables
[
var
.
name
]
=
var
build_strategy
=
BuildStrategy
()
build_strategy
.
enable_inplace
=
False
build_strategy
.
memory_optimize
=
False
# for quantization training
context
.
optimize_graph
.
compiled_graph
=
CompiledProgram
(
train_ir_graph
.
graph
).
with_data_parallel
(
loss_name
=
context
.
optimize_graph
.
out_nodes
[
'loss'
],
build_strategy
=
build_strategy
)
# for evaluation. And program compiled from ir graph must be with data parallel.
context
.
eval_graph
.
compiled_graph
=
CompiledProgram
(
test_ir_graph
.
graph
).
with_data_parallel
(
build_strategy
=
build_strategy
)
# for saving inference model after training
context
.
put
(
'quantization_test_ir_graph_backup'
,
test_ir_graph
)
def
on_epoch_begin
(
self
,
context
):
"""
Insert fake_quantize_op and fake_dequantize_op before trainging and testing.
"""
super
(
QuantizationStrategy
,
self
).
on_
compression
_begin
(
context
)
super
(
QuantizationStrategy
,
self
).
on_
epoch
_begin
(
context
)
if
self
.
start_epoch
==
context
.
epoch_id
:
_logger
.
info
(
'QuantizationStrategy::on_epoch_begin'
)
train_ir_graph
=
IrGraph
(
core
.
Graph
(
context
.
optimize_graph
.
program
.
desc
),
for_test
=
False
)
test_ir_graph
=
IrGraph
(
core
.
Graph
(
context
.
eval_graph
.
program
.
desc
),
for_test
=
True
)
transform_pass
=
QuantizationTransformPass
(
scope
=
context
.
scope
,
place
=
context
.
place
,
weight_bits
=
self
.
weight_bits
,
activation_bits
=
self
.
activation_bits
,
activation_quantize_type
=
self
.
activation_quantize_type
)
transform_pass
.
apply
(
train_ir_graph
)
transform_pass
.
apply
(
test_ir_graph
)
build_strategy
=
BuildStrategy
()
build_strategy
.
enable_inplace
=
False
build_strategy
.
memory_optimize
=
False
# for quantization training
context
.
optimize_graph
.
compiled_graph
=
CompiledProgram
(
train_ir_graph
.
graph
).
with_data_parallel
(
loss_name
=
context
.
optimize_graph
.
out_nodes
[
'loss'
],
build_strategy
=
build_strategy
)
# for evaluation. And program compiled from ir graph must be with data parallel.
context
.
eval_graph
.
compiled_graph
=
CompiledProgram
(
test_ir_graph
.
graph
).
with_data_parallel
(
build_strategy
=
build_strategy
)
# for saving inference model after training
context
.
put
(
'quantization_test_ir_graph_backup'
,
test_ir_graph
)
self
.
_modify_graph_for_quantization
(
context
)
_logger
.
info
(
'Finish QuantizationStrategy::on_epoch_begin'
)
def
on_epoch_end
(
self
,
context
):
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录