Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleDetection
提交
6cf56035
P
PaddleDetection
项目概览
PaddlePaddle
/
PaddleDetection
大约 1 年 前同步成功
通知
695
Star
11112
Fork
2696
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
184
列表
看板
标记
里程碑
合并请求
40
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
184
Issue
184
列表
看板
标记
里程碑
合并请求
40
合并请求
40
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
6cf56035
编写于
2月 22, 2017
作者:
D
dangqingqing
浏览文件
操作
浏览文件
下载
差异文件
resolve conflicts
上级
15180e85
ac712688
变更
8
隐藏空白更改
内联
并排
Showing
8 changed file
with
100 addition
and
20 deletion
+100
-20
doc/api/trainer_config_helpers/layers.rst
doc/api/trainer_config_helpers/layers.rst
+6
-0
paddle/gserver/layers/SequenceReshapeLayer.cpp
paddle/gserver/layers/SequenceReshapeLayer.cpp
+6
-3
python/paddle/trainer_config_helpers/layers.py
python/paddle/trainer_config_helpers/layers.py
+61
-0
python/paddle/trainer_config_helpers/tests/configs/file_list.sh
.../paddle/trainer_config_helpers/tests/configs/file_list.sh
+1
-1
python/paddle/trainer_config_helpers/tests/configs/protostr/test_seq_concat_reshape.protostr
...s/tests/configs/protostr/test_seq_concat_reshape.protostr
+12
-0
python/paddle/trainer_config_helpers/tests/configs/test_seq_concat_reshape.py
...r_config_helpers/tests/configs/test_seq_concat_reshape.py
+5
-2
python/paddle/v2/__init__.py
python/paddle/v2/__init__.py
+2
-9
python/paddle/v2/layer.py
python/paddle/v2/layer.py
+7
-5
未找到文件。
doc/api/trainer_config_helpers/layers.rst
浏览文件 @
6cf56035
...
...
@@ -308,6 +308,12 @@ repeat_layer
:members: repeat_layer
:noindex:
seq_reshape_layer
-----------------
.. automodule:: paddle.trainer_config_helpers.layers
:members: seq_reshape_layer
:noindex:
Math Layers
===========
...
...
paddle/gserver/layers/SequenceReshapeLayer.cpp
浏览文件 @
6cf56035
...
...
@@ -20,9 +20,12 @@ limitations under the License. */
namespace
paddle
{
/**
* A layer for reshaping the sequence
* Input: a sequence
* Output: a sequence
* A layer for reshaping the sequence. Assume the input sequence has
* T instances, the dimension of each instance is M, and the input
* reshape_dim is N, then the output sequence has T*M/N instances,
* the dimension of each instance is N.
*
* Note that T*M/N must be an integer.
*/
class
SequenceReshapeLayer
:
public
Layer
{
...
...
python/paddle/trainer_config_helpers/layers.py
浏览文件 @
6cf56035
...
...
@@ -37,6 +37,7 @@ __all__ = [
"dotmul_projection"
,
"dotmul_operator"
,
"repeat_layer"
,
"seq_reshape_layer"
,
"table_projection"
,
"mixed_layer"
,
"data_layer"
,
...
...
@@ -125,6 +126,7 @@ class LayerType(object):
GRUMEMORY
=
"gated_recurrent"
SEQUENCE_LAST_INSTANCE
=
"seqlastins"
SEQUENCE_FIRST_INSTANCE
=
"seqfirstins"
SEQUENCE_RESHAPE
=
"seqreshape"
POOLING_MAX
=
"max"
POOLING_AVG
=
'average'
FC_LAYER
=
"fc"
...
...
@@ -1450,6 +1452,61 @@ def repeat_layer(input, num_repeats, name=None, layer_attr=None):
parents
=
[
input
])
@
wrap_name_default
(
"seqreshape"
)
@
wrap_act_default
(
act
=
IdentityActivation
())
@
wrap_bias_attr_default
(
has_bias
=
False
)
@
layer_support
()
def
seq_reshape_layer
(
input
,
reshape_size
,
act
=
None
,
name
=
None
,
layer_attr
=
None
,
bias_attr
=
None
):
"""
A layer for reshaping the sequence. Assume the input sequence has T instances,
the dimension of each instance is M, and the input reshape_size is N, then the
output sequence has T*M/N instances, the dimension of each instance is N.
Note that T*M/N must be an integer.
The example usage is:
.. code-block:: python
reshape = seq_reshape_layer(input=layer, reshape_size=4)
:param input: Input layer.
:type input: LayerOutput
:param reshape_size: the size of reshaped sequence.
:type reshape_size: int
:param name: Layer name.
:type name: basestring
:param act: Activation type.
:type act: BaseActivation
:param layer_attr: extra layer attributes.
:type layer_attr: ExtraLayerAttribute.
:param bias_attr: The Bias Attribute. If no bias, then pass False or
something not type of ParameterAttribute. None will get a
default Bias.
:type bias_attr: ParameterAttribute or None or bool
:return: LayerOutput object.
:rtype: LayerOutput
"""
Layer
(
inputs
=
[
input
.
name
],
name
=
name
,
size
=
reshape_size
,
type
=
LayerType
.
SEQUENCE_RESHAPE
,
bias
=
ParamAttr
.
to_bias
(
bias_attr
),
**
ExtraAttr
.
to_kwargs
(
layer_attr
))
return
LayerOutput
(
name
=
name
,
size
=
reshape_size
,
layer_type
=
LayerType
.
SEQUENCE_RESHAPE
,
parents
=
[
input
])
@
wrap_name_default
()
@
layer_support
()
def
interpolation_layer
(
input
,
weight
,
name
=
None
,
layer_attr
=
None
):
...
...
@@ -2604,6 +2661,10 @@ def seq_concat_layer(a, b, act=None, name=None, layer_attr=None,
:type act: BaseActivation
:param layer_attr: Extra Layer Attribute.
:type layer_attr: ExtraLayerAttribute
:param bias_attr: The Bias Attribute. If no bias, then pass False or
something not type of ParameterAttribute. None will get a
default Bias.
:type bias_attr: ParameterAttribute or None or bool
:return: LayerOutput object.
:rtype: LayerOutput
"""
...
...
python/paddle/trainer_config_helpers/tests/configs/file_list.sh
浏览文件 @
6cf56035
...
...
@@ -5,6 +5,6 @@ last_first_seq test_expand_layer test_ntm_layers test_hsigmoid
img_layers img_trans_layers util_layers simple_rnn_layers unused_layers test_cost_layers
test_rnn_group shared_fc shared_lstm shared_gru test_cost_layers_with_weight
test_spp_layer test_bilinear_interp test_maxout test_bi_grumemory math_ops
test_seq_concat
)
test_seq_concat
_reshape
)
export
whole_configs
=(
test_split_datasource
)
python/paddle/trainer_config_helpers/tests/configs/protostr/test_seq_concat.protostr
→
python/paddle/trainer_config_helpers/tests/configs/protostr/test_seq_concat
_reshape
.protostr
浏览文件 @
6cf56035
...
...
@@ -23,17 +23,29 @@ layers {
input_layer_name: "data2"
}
}
layers {
name: "__seqreshape_0__"
type: "seqreshape"
size: 5
active_type: "linear"
inputs {
input_layer_name: "data1"
}
}
input_layer_names: "data1"
input_layer_names: "data2"
output_layer_names: "__seqconcat_0__"
output_layer_names: "__seqreshape_0__"
sub_models {
name: "root"
layer_names: "data1"
layer_names: "data2"
layer_names: "__seqconcat_0__"
layer_names: "__seqreshape_0__"
input_layer_names: "data1"
input_layer_names: "data2"
output_layer_names: "__seqconcat_0__"
output_layer_names: "__seqreshape_0__"
is_recurrent_layer_group: false
}
python/paddle/trainer_config_helpers/tests/configs/test_seq_concat.py
→
python/paddle/trainer_config_helpers/tests/configs/test_seq_concat
_reshape
.py
浏览文件 @
6cf56035
...
...
@@ -3,7 +3,10 @@ from paddle.trainer_config_helpers import *
settings
(
batch_size
=
1000
,
learning_rate
=
1e-5
)
din1
=
data_layer
(
name
=
'data1'
,
size
=
30
)
din2
=
data_layer
(
name
=
'data2'
,
size
=
30
)
outputs
(
seq_concat_layer
(
a
=
din1
,
b
=
din2
))
opts
=
[]
opts
.
append
(
seq_concat_layer
(
a
=
din1
,
b
=
din2
))
opts
.
append
(
seq_reshape_layer
(
input
=
din1
,
reshape_size
=
5
))
outputs
(
opts
)
python/paddle/v2/__init__.py
浏览文件 @
6cf56035
...
...
@@ -21,15 +21,8 @@ import data_type
import
py_paddle.swig_paddle
as
api
__all__
=
[
'optimizer'
,
'layer'
,
'activation'
,
'parameters'
,
'init'
,
'trainer'
,
'event'
,
'data_type'
,
'data_feeder'
,
'optimizer'
,
'layer'
,
'activation'
,
'parameters'
,
'init'
,
'trainer'
,
'event'
,
'data_type'
,
'data_feeder'
]
...
...
python/paddle/v2/layer.py
浏览文件 @
6cf56035
...
...
@@ -66,12 +66,14 @@ Also, the creation of a protobuf message is hidden in the invocation of
paddle.v2.parameters.create, no longer exposed to users.
"""
import
collections
import
paddle.trainer_config_helpers
as
conf_helps
from
.
import
data_type
as
v2_data
from
paddle.trainer_config_helpers.config_parser_utils
import
\
parse_network_config
as
__parse__
from
paddle.trainer_config_helpers.default_decorators
import
wrap_name_default
import
collections
import
data_type
__all__
=
[
'parse_network'
,
'data'
,
'fc'
,
'max_id'
,
'classification_cost'
,
...
...
@@ -166,7 +168,7 @@ So we also need to implement some special LayerV2.
class
DataLayerV2
(
Layer
):
def
__init__
(
self
,
name
,
type
,
**
kwargs
):
assert
isinstance
(
type
,
v2_data
.
InputType
)
assert
isinstance
(
type
,
data_type
.
InputType
)
self
.
type
=
type
self
.
__method_name__
=
'data_layer'
...
...
@@ -198,8 +200,8 @@ cross_entropy_cost = __convert_to_v2__(
parent_names
=
[
'input'
,
'label'
])
if
__name__
==
'__main__'
:
pixel
=
data
(
name
=
'pixel'
,
type
=
v2_data
.
dense_vector
(
784
))
label
=
data
(
name
=
'label'
,
type
=
v2_data
.
integer_value
(
10
))
pixel
=
data
(
name
=
'pixel'
,
type
=
data_type
.
dense_vector
(
784
))
label
=
data
(
name
=
'label'
,
type
=
data_type
.
integer_value
(
10
))
hidden
=
fc
(
input
=
pixel
,
size
=
100
,
act
=
conf_helps
.
SigmoidActivation
())
inference
=
fc
(
input
=
hidden
,
size
=
10
,
act
=
conf_helps
.
SoftmaxActivation
())
maxid
=
max_id
(
input
=
inference
)
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录