Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleDetection
提交
6cb66721
P
PaddleDetection
项目概览
PaddlePaddle
/
PaddleDetection
大约 1 年 前同步成功
通知
695
Star
11112
Fork
2696
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
184
列表
看板
标记
里程碑
合并请求
40
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
184
Issue
184
列表
看板
标记
里程碑
合并请求
40
合并请求
40
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
6cb66721
编写于
3月 04, 2019
作者:
D
dengkaipeng
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
add cudnn support. test=develop
上级
518325f1
变更
3
隐藏空白更改
内联
并排
Showing
3 changed file
with
164 addition
and
50 deletion
+164
-50
paddle/fluid/operators/softmax_cudnn_op.cu.cc
paddle/fluid/operators/softmax_cudnn_op.cu.cc
+54
-16
paddle/fluid/operators/softmax_op.h
paddle/fluid/operators/softmax_op.h
+52
-31
python/paddle/fluid/tests/unittests/test_softmax_op.py
python/paddle/fluid/tests/unittests/test_softmax_op.py
+58
-3
未找到文件。
paddle/fluid/operators/softmax_cudnn_op.cu.cc
浏览文件 @
6cb66721
...
...
@@ -13,6 +13,7 @@ See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/operators/math/softmax.h"
#include "paddle/fluid/operators/softmax_op.h"
#include "paddle/fluid/framework/op_registry.h"
namespace
paddle
{
...
...
@@ -24,22 +25,40 @@ template <typename T>
class
SoftmaxCUDNNKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
context
)
const
override
{
auto
&
dev_ctx
=
context
.
template
device_context
<
platform
::
CUDADeviceContext
>();
auto
*
X
=
context
.
Input
<
Tensor
>
(
"X"
);
auto
*
Out
=
context
.
Output
<
Tensor
>
(
"Out"
);
// auto dims = X->dims();
const
int
axis
=
context
.
Attr
<
int
>
(
"axis"
);
int
rank
=
X
->
dims
().
size
();
// allocate memory on device.
Out
->
mutable_data
<
T
>
(
context
.
GetPlace
());
auto
dims
=
X
->
dims
();
auto
flattened_dims
=
framework
::
flatten_to_2d
(
dims
,
dims
.
size
()
-
1
);
framework
::
LoDTensor
flattened_x
;
framework
::
LoDTensor
flattened_out
;
flattened_x
.
ShareDataWith
(
*
X
).
Resize
(
flattened_dims
);
flattened_out
.
ShareDataWith
(
*
Out
).
Resize
(
flattened_dims
);
std
::
vector
<
int
>
perm
,
shape
;
CalcTransPermAndShapeByAxis
(
*
X
,
axis
,
&
perm
,
&
shape
);
Tensor
X_2d
,
Out_2d
;
Tensor
X_trans
,
Out_trans
;
if
(
axis
!=
-
1
&&
axis
!=
rank
-
1
)
{
X_trans
.
mutable_data
<
T
>
(
framework
::
make_ddim
(
shape
),
context
.
GetPlace
());
Out_trans
.
mutable_data
<
T
>
(
framework
::
make_ddim
(
shape
),
context
.
GetPlace
());
TransCompute
<
platform
::
CUDADeviceContext
,
T
>
(
rank
,
dev_ctx
,
*
X
,
&
X_trans
,
perm
);
TransCompute
<
platform
::
CUDADeviceContext
,
T
>
(
rank
,
dev_ctx
,
*
Out
,
&
Out_trans
,
perm
);
X_2d
=
framework
::
ReshapeToMatrix
(
X_trans
,
rank
-
1
);
Out_2d
=
framework
::
ReshapeToMatrix
(
Out_trans
,
rank
-
1
);
}
else
{
X_2d
=
framework
::
ReshapeToMatrix
(
*
X
,
rank
-
1
);
Out_2d
=
framework
::
ReshapeToMatrix
(
*
Out
,
rank
-
1
);
}
math
::
SoftmaxCUDNNFunctor
<
T
>
()(
context
.
template
device_context
<
platform
::
CUDADeviceContext
>(),
&
flattened_x
,
&
flattened_out
);
&
X_2d
,
&
Out_2d
);
if
(
axis
!=
-
1
&&
axis
!=
rank
-
1
)
{
TransCompute
<
platform
::
CUDADeviceContext
,
T
>
(
rank
,
dev_ctx
,
Out_trans
,
Out
,
perm
);
}
}
};
...
...
@@ -47,25 +66,44 @@ template <typename T>
class
SoftmaxGradCUDNNKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
context
)
const
override
{
auto
&
dev_ctx
=
context
.
template
device_context
<
platform
::
CUDADeviceContext
>();
auto
*
Out
=
context
.
Input
<
Tensor
>
(
"Out"
);
auto
*
dOut
=
context
.
Input
<
Tensor
>
(
framework
::
GradVarName
(
"Out"
));
auto
*
dX
=
context
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"X"
));
const
int
axis
=
context
.
Attr
<
int
>
(
"axis"
);
int
rank
=
Out
->
dims
().
size
();
// allocate memory on device.
dX
->
mutable_data
<
T
>
(
context
.
GetPlace
());
auto
dims
=
Out
->
dims
();
auto
flattened_dims
=
framework
::
flatten_to_2d
(
dims
,
dims
.
size
()
-
1
);
framework
::
LoDTensor
flattened_out
;
framework
::
LoDTensor
flattened_d_out
;
framework
::
LoDTensor
flattened_d_x
;
flattened_out
.
ShareDataWith
(
*
Out
).
Resize
(
flattened_dims
);
flattened_d_out
.
ShareDataWith
(
*
dOut
).
Resize
(
flattened_dims
);
flattened_d_x
.
ShareDataWith
(
*
dX
).
Resize
(
flattened_dims
);
std
::
vector
<
int
>
perm
,
shape
;
CalcTransPermAndShapeByAxis
(
*
dX
,
axis
,
&
perm
,
&
shape
);
Tensor
dX_2d
,
Out_2d
,
dOut_2d
;
Tensor
dX_trans
,
Out_trans
,
dOut_trans
;
if
(
axis
!=
-
1
&&
axis
!=
rank
-
1
)
{
dX_trans
.
mutable_data
<
T
>
(
framework
::
make_ddim
(
shape
),
context
.
GetPlace
());
Out_trans
.
mutable_data
<
T
>
(
framework
::
make_ddim
(
shape
),
context
.
GetPlace
());
dOut_trans
.
mutable_data
<
T
>
(
framework
::
make_ddim
(
shape
),
context
.
GetPlace
());
TransCompute
<
platform
::
CUDADeviceContext
,
T
>
(
rank
,
dev_ctx
,
*
dX
,
&
dX_trans
,
perm
);
TransCompute
<
platform
::
CUDADeviceContext
,
T
>
(
rank
,
dev_ctx
,
*
Out
,
&
Out_trans
,
perm
);
TransCompute
<
platform
::
CUDADeviceContext
,
T
>
(
rank
,
dev_ctx
,
*
dOut
,
&
dOut_trans
,
perm
);
dX_2d
=
framework
::
ReshapeToMatrix
(
dX_trans
,
rank
-
1
);
Out_2d
=
framework
::
ReshapeToMatrix
(
Out_trans
,
rank
-
1
);
dOut_2d
=
framework
::
ReshapeToMatrix
(
dOut_trans
,
rank
-
1
);
}
else
{
dX_2d
=
framework
::
ReshapeToMatrix
(
*
dX
,
rank
-
1
);
Out_2d
=
framework
::
ReshapeToMatrix
(
*
Out
,
rank
-
1
);
dOut_2d
=
framework
::
ReshapeToMatrix
(
*
dOut
,
rank
-
1
);
}
math
::
SoftmaxGradCUDNNFunctor
<
T
>
()(
context
.
template
device_context
<
platform
::
CUDADeviceContext
>(),
&
flattened_out
,
&
flattened_d_out
,
&
flattened_d_x
);
&
Out_2d
,
&
dOut_2d
,
&
dX_2d
);
if
(
axis
!=
-
1
&&
axis
!=
rank
-
1
)
{
TransCompute
<
platform
::
CUDADeviceContext
,
T
>
(
rank
,
dev_ctx
,
dX_trans
,
dX
,
perm
);
}
}
};
...
...
paddle/fluid/operators/softmax_op.h
浏览文件 @
6cb66721
...
...
@@ -23,59 +23,58 @@ namespace operators {
using
Tensor
=
framework
::
Tensor
;
template
<
typename
DeviceContext
,
typename
T
>
static
inline
void
TransposeAxisToEnd
(
const
Tensor
&
x
,
const
Tensor
&
out
,
Tensor
*
x_trans
,
Tensor
*
out_trans
,
const
int
axis
,
std
::
vector
<
int
>
perm
,
const
framework
::
ExecutionContext
&
ctx
)
{
static
inline
void
CalcTransPermAndShapeByAxis
(
const
Tensor
&
x
,
const
int
axis
,
std
::
vector
<
int
>*
perm
,
std
::
vector
<
int
>*
shape
)
{
auto
dim_x
=
x
.
dims
();
int
rank
=
dim_x
.
size
();
if
(
axis
==
-
1
||
axis
==
rank
-
1
)
{
*
x_trans
=
x
;
*
out_trans
=
out
;
return
;
}
auto
&
dev_ctx
=
ctx
.
template
device_context
<
DeviceContext
>();
std
::
vector
<
int
>
shape
;
for
(
int
i
=
0
;
i
<
rank
-
1
;
i
++
)
{
if
(
i
==
axis
)
{
perm
.
push_back
(
rank
-
1
);
shape
.
push_back
(
dim_x
[
rank
-
1
]);
perm
->
push_back
(
rank
-
1
);
shape
->
push_back
(
dim_x
[
rank
-
1
]);
}
else
{
perm
.
push_back
(
i
);
shape
.
push_back
(
dim_x
[
i
]);
perm
->
push_back
(
i
);
shape
->
push_back
(
dim_x
[
i
]);
}
}
perm
.
push_back
(
axis
);
shape
.
push_back
(
dim_x
[
axis
]);
x_trans
->
mutable_data
<
T
>
(
framework
::
make_ddim
(
shape
),
ctx
.
GetPlace
());
out_trans
->
mutable_data
<
T
>
(
framework
::
make_ddim
(
shape
),
ctx
.
GetPlace
());
TransCompute
<
DeviceContext
,
T
>
(
rank
,
dev_ctx
,
x
,
x_trans
,
perm
);
TransCompute
<
DeviceContext
,
T
>
(
rank
,
dev_ctx
,
out
,
out_trans
,
perm
);
perm
->
push_back
(
axis
);
shape
->
push_back
(
dim_x
[
axis
]);
}
template
<
typename
DeviceContext
,
typename
T
>
class
SoftmaxKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
context
)
const
override
{
auto
&
dev_ctx
=
context
.
template
device_context
<
DeviceContext
>();
auto
*
X
=
context
.
Input
<
Tensor
>
(
"X"
);
auto
*
Out
=
context
.
Output
<
Tensor
>
(
"Out"
);
const
int
axis
=
context
.
Attr
<
int
>
(
"axis"
);
int
rank
=
X
->
dims
().
size
();
// allocate memory on device.
Out
->
mutable_data
<
T
>
(
context
.
GetPlace
());
std
::
vector
<
int
>
perm
,
shape
;
CalcTransPermAndShapeByAxis
(
*
X
,
axis
,
&
perm
,
&
shape
);
Tensor
X_2d
,
Out_2d
;
Tensor
X_trans
,
Out_trans
;
std
::
vector
<
int
>
perm
;
TransposeAxisToEnd
<
DeviceContext
,
T
>
(
*
X
,
*
Out
,
&
X_trans
,
&
Out_trans
,
axis
,
perm
,
context
);
if
(
axis
!=
-
1
&&
axis
!=
rank
-
1
)
{
X_trans
.
mutable_data
<
T
>
(
framework
::
make_ddim
(
shape
),
context
.
GetPlace
());
Out_trans
.
mutable_data
<
T
>
(
framework
::
make_ddim
(
shape
),
context
.
GetPlace
());
TransCompute
<
DeviceContext
,
T
>
(
rank
,
dev_ctx
,
*
X
,
&
X_trans
,
perm
);
TransCompute
<
DeviceContext
,
T
>
(
rank
,
dev_ctx
,
*
Out
,
&
Out_trans
,
perm
);
X_2d
=
framework
::
ReshapeToMatrix
(
X_trans
,
rank
-
1
);
Out_2d
=
framework
::
ReshapeToMatrix
(
Out_trans
,
rank
-
1
);
}
else
{
X_2d
=
framework
::
ReshapeToMatrix
(
*
X
,
rank
-
1
);
Out_2d
=
framework
::
ReshapeToMatrix
(
*
Out
,
rank
-
1
);
}
int
rank
=
X
->
dims
().
size
();
Tensor
X_2d
=
framework
::
ReshapeToMatrix
(
X_trans
,
rank
-
1
);
Tensor
Out_2d
=
framework
::
ReshapeToMatrix
(
Out_trans
,
rank
-
1
);
#ifdef PADDLE_ON_INFERENCE
math
::
SoftmaxFunctor
<
DeviceContext
,
T
,
true
>
()(
...
...
@@ -86,7 +85,6 @@ class SoftmaxKernel : public framework::OpKernel<T> {
#endif
if
(
axis
!=
-
1
&&
axis
!=
rank
-
1
)
{
auto
&
dev_ctx
=
context
.
template
device_context
<
DeviceContext
>();
TransCompute
<
DeviceContext
,
T
>
(
rank
,
dev_ctx
,
Out_trans
,
Out
,
perm
);
}
}
...
...
@@ -96,21 +94,44 @@ template <typename DeviceContext, typename T>
class
SoftmaxGradKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
context
)
const
override
{
auto
&
dev_ctx
=
context
.
template
device_context
<
DeviceContext
>();
auto
*
Out
=
context
.
Input
<
Tensor
>
(
"Out"
);
auto
*
dOut
=
context
.
Input
<
Tensor
>
(
framework
::
GradVarName
(
"Out"
));
auto
*
dX
=
context
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"X"
));
const
int
axis
=
context
.
Attr
<
int
>
(
"axis"
);
int
rank
=
Out
->
dims
().
size
();
// allocate memory on device.
dX
->
mutable_data
<
T
>
(
context
.
GetPlace
());
int
rank
=
Out
->
dims
().
size
();
Tensor
Out_2d
=
framework
::
ReshapeToMatrix
(
*
Out
,
rank
-
1
);
Tensor
dOut_2d
=
framework
::
ReshapeToMatrix
(
*
dOut
,
rank
-
1
);
Tensor
dX_2d
=
framework
::
ReshapeToMatrix
(
*
dX
,
rank
-
1
);
std
::
vector
<
int
>
perm
,
shape
;
CalcTransPermAndShapeByAxis
(
*
dX
,
axis
,
&
perm
,
&
shape
);
Tensor
dX_2d
,
Out_2d
,
dOut_2d
;
Tensor
dX_trans
,
Out_trans
,
dOut_trans
;
if
(
axis
!=
-
1
&&
axis
!=
rank
-
1
)
{
dX_trans
.
mutable_data
<
T
>
(
framework
::
make_ddim
(
shape
),
context
.
GetPlace
());
Out_trans
.
mutable_data
<
T
>
(
framework
::
make_ddim
(
shape
),
context
.
GetPlace
());
dOut_trans
.
mutable_data
<
T
>
(
framework
::
make_ddim
(
shape
),
context
.
GetPlace
());
TransCompute
<
DeviceContext
,
T
>
(
rank
,
dev_ctx
,
*
dX
,
&
dX_trans
,
perm
);
TransCompute
<
DeviceContext
,
T
>
(
rank
,
dev_ctx
,
*
Out
,
&
Out_trans
,
perm
);
TransCompute
<
DeviceContext
,
T
>
(
rank
,
dev_ctx
,
*
dOut
,
&
dOut_trans
,
perm
);
dX_2d
=
framework
::
ReshapeToMatrix
(
dX_trans
,
rank
-
1
);
Out_2d
=
framework
::
ReshapeToMatrix
(
Out_trans
,
rank
-
1
);
dOut_2d
=
framework
::
ReshapeToMatrix
(
dOut_trans
,
rank
-
1
);
}
else
{
dX_2d
=
framework
::
ReshapeToMatrix
(
*
dX
,
rank
-
1
);
Out_2d
=
framework
::
ReshapeToMatrix
(
*
Out
,
rank
-
1
);
dOut_2d
=
framework
::
ReshapeToMatrix
(
*
dOut
,
rank
-
1
);
}
math
::
SoftmaxGradFunctor
<
DeviceContext
,
T
>
()(
context
.
template
device_context
<
DeviceContext
>(),
&
Out_2d
,
&
dOut_2d
,
&
dX_2d
);
if
(
axis
!=
-
1
&&
axis
!=
rank
-
1
)
{
TransCompute
<
DeviceContext
,
T
>
(
rank
,
dev_ctx
,
dX_trans
,
dX
,
perm
);
}
}
};
...
...
python/paddle/fluid/tests/unittests/test_softmax_op.py
浏览文件 @
6cb66721
...
...
@@ -31,6 +31,9 @@ class TestSoftmaxOp(OpTest):
def
get_x_shape
(
self
):
return
[
10
,
10
]
def
get_axis
(
self
):
return
-
1
def
setUp
(
self
):
self
.
op_type
=
"softmax"
self
.
use_cudnn
=
False
...
...
@@ -38,15 +41,15 @@ class TestSoftmaxOp(OpTest):
self
.
dtype
=
np
.
float32
self
.
init_kernel_type
()
self
.
shape
=
self
.
get_x_shape
()
self
.
axis
=
self
.
get_axis
()
x
=
np
.
random
.
uniform
(
0.1
,
1
,
self
.
shape
).
astype
(
self
.
dtype
)
out
=
np
.
apply_along_axis
(
stable_softmax
,
1
,
x
.
reshape
([
-
1
,
self
.
shape
[
-
1
]]))
out
=
out
.
reshape
(
self
.
shape
)
out
=
np
.
apply_along_axis
(
stable_softmax
,
self
.
axis
,
x
)
self
.
inputs
=
{
'X'
:
OpTest
.
np_dtype_to_fluid_dtype
(
x
)}
self
.
outputs
=
{
'Out'
:
out
}
self
.
attrs
=
{
'axis'
:
self
.
axis
,
'use_cudnn'
:
self
.
use_cudnn
,
'use_mkldnn'
:
self
.
use_mkldnn
}
...
...
@@ -76,6 +79,38 @@ class TestSoftmaxOp2(TestSoftmaxOp):
return
[
2
,
3
,
4
,
5
]
class
TestSoftmaxOp3
(
TestSoftmaxOp
):
def
get_x_shape
(
self
):
return
[
2
,
3
,
4
,
5
]
def
get_axis
(
self
):
return
0
class
TestSoftmaxOp4
(
TestSoftmaxOp
):
def
get_x_shape
(
self
):
return
[
2
,
3
,
4
,
5
]
def
get_axis
(
self
):
return
1
class
TestSoftmaxOp5
(
TestSoftmaxOp
):
def
get_x_shape
(
self
):
return
[
2
,
3
,
4
,
5
]
def
get_axis
(
self
):
return
2
class
TestSoftmaxOp5
(
TestSoftmaxOp
):
def
get_x_shape
(
self
):
return
[
2
,
3
,
4
,
5
]
def
get_axis
(
self
):
return
3
@
unittest
.
skipIf
(
not
core
.
is_compiled_with_cuda
(),
"core is not compiled with CUDA"
)
class
TestSoftmaxCUDNNOp
(
TestSoftmaxOp
):
...
...
@@ -90,6 +125,26 @@ class TestSoftmaxCUDNNOp2(TestSoftmaxCUDNNOp):
return
[
2
,
3
,
4
,
5
]
@
unittest
.
skipIf
(
not
core
.
is_compiled_with_cuda
(),
"core is not compiled with CUDA"
)
class
TestSoftmaxCUDNNOp3
(
TestSoftmaxCUDNNOp
):
def
get_x_shape
(
self
):
return
[
2
,
3
,
4
,
5
]
def
get_axis
(
self
):
return
1
@
unittest
.
skipIf
(
not
core
.
is_compiled_with_cuda
(),
"core is not compiled with CUDA"
)
class
TestSoftmaxCUDNNOp2
(
TestSoftmaxCUDNNOp
):
def
get_x_shape
(
self
):
return
[
2
,
3
,
4
,
5
]
def
get_axis
(
self
):
return
2
@
unittest
.
skipIf
(
not
core
.
is_compiled_with_cuda
(),
"core is not compiled with CUDA"
)
class
TestSoftmaxFP16Op
(
TestSoftmaxOp
):
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录