Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleDetection
提交
6c641827
P
PaddleDetection
项目概览
PaddlePaddle
/
PaddleDetection
接近 2 年 前同步成功
通知
707
Star
11112
Fork
2696
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
184
列表
看板
标记
里程碑
合并请求
40
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
184
Issue
184
列表
看板
标记
里程碑
合并请求
40
合并请求
40
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
6c641827
编写于
3月 18, 2019
作者:
D
dengkaipeng
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
refine softmax kernel. test=develop
上级
412b7cbd
变更
7
隐藏空白更改
内联
并排
Showing
7 changed file
with
119 addition
and
249 deletion
+119
-249
paddle/fluid/operators/math/softmax.h
paddle/fluid/operators/math/softmax.h
+5
-4
paddle/fluid/operators/math/softmax_impl.h
paddle/fluid/operators/math/softmax_impl.h
+14
-8
paddle/fluid/operators/mkldnn/softmax_mkldnn_op.cc
paddle/fluid/operators/mkldnn/softmax_mkldnn_op.cc
+39
-95
paddle/fluid/operators/softmax_cudnn_op.cu.cc
paddle/fluid/operators/softmax_cudnn_op.cu.cc
+18
-67
paddle/fluid/operators/softmax_op.h
paddle/fluid/operators/softmax_op.h
+41
-73
paddle/fluid/operators/softmax_with_cross_entropy_op.h
paddle/fluid/operators/softmax_with_cross_entropy_op.h
+1
-1
paddle/fluid/operators/warpctc_cudnn_op.cu.cc
paddle/fluid/operators/warpctc_cudnn_op.cu.cc
+1
-1
未找到文件。
paddle/fluid/operators/math/softmax.h
浏览文件 @
6c641827
...
@@ -23,15 +23,16 @@ template <typename DeviceContext, typename T, bool is_test,
...
@@ -23,15 +23,16 @@ template <typename DeviceContext, typename T, bool is_test,
typename
Enable
=
void
>
typename
Enable
=
void
>
class
SoftmaxFunctor
{
class
SoftmaxFunctor
{
public:
public:
void
operator
()(
const
DeviceContext
&
context
,
const
framework
::
Tensor
*
X
,
void
operator
()(
const
DeviceContext
&
context
,
const
int
axis_dim
,
framework
::
Tensor
*
Y
);
const
framework
::
Tensor
*
X
,
framework
::
Tensor
*
Y
);
};
};
template
<
typename
DeviceContext
,
typename
T
>
template
<
typename
DeviceContext
,
typename
T
>
class
SoftmaxGradFunctor
{
class
SoftmaxGradFunctor
{
public:
public:
void
operator
()(
const
DeviceContext
&
context
,
const
framework
::
Tensor
*
y
,
void
operator
()(
const
DeviceContext
&
context
,
const
int
axis_dim
,
const
framework
::
Tensor
*
y_grad
,
framework
::
Tensor
*
x_grad
);
const
framework
::
Tensor
*
y
,
const
framework
::
Tensor
*
y_grad
,
framework
::
Tensor
*
x_grad
);
};
};
#ifdef PADDLE_WITH_CUDA
#ifdef PADDLE_WITH_CUDA
...
...
paddle/fluid/operators/math/softmax_impl.h
浏览文件 @
6c641827
...
@@ -36,8 +36,8 @@ struct ValueClip {
...
@@ -36,8 +36,8 @@ struct ValueClip {
template
<
typename
DeviceContext
,
typename
T
,
bool
is_test
,
typename
Enable
>
template
<
typename
DeviceContext
,
typename
T
,
bool
is_test
,
typename
Enable
>
void
SoftmaxFunctor
<
DeviceContext
,
T
,
is_test
,
Enable
>::
operator
()(
void
SoftmaxFunctor
<
DeviceContext
,
T
,
is_test
,
Enable
>::
operator
()(
const
DeviceContext
&
context
,
const
framework
::
Tensor
*
X
,
const
DeviceContext
&
context
,
const
int
axis_dim
,
framework
::
Tensor
*
Y
)
{
const
framework
::
Tensor
*
X
,
framework
::
Tensor
*
Y
)
{
auto
logits
=
EigenMatrix
<
T
>::
From
(
*
X
);
auto
logits
=
EigenMatrix
<
T
>::
From
(
*
X
);
auto
softmax
=
EigenMatrix
<
T
>::
From
(
*
Y
);
auto
softmax
=
EigenMatrix
<
T
>::
From
(
*
Y
);
...
@@ -46,10 +46,13 @@ void SoftmaxFunctor<DeviceContext, T, is_test, Enable>::operator()(
...
@@ -46,10 +46,13 @@ void SoftmaxFunctor<DeviceContext, T, is_test, Enable>::operator()(
const
int
batch_size
=
logits
.
dimension
(
kBatchDim
);
const
int
batch_size
=
logits
.
dimension
(
kBatchDim
);
const
int
num_classes
=
logits
.
dimension
(
kClassDim
);
const
int
num_classes
=
logits
.
dimension
(
kClassDim
);
const
int
num_remain
=
num_classes
/
axis_dim
;
Eigen
::
DSizes
<
int
,
1
>
along_class
(
kClassDim
);
Eigen
::
DSizes
<
int
,
1
>
along_class
(
kClassDim
);
Eigen
::
DSizes
<
int
,
2
>
batch_by_one
(
batch_size
,
1
);
Eigen
::
DSizes
<
int
,
2
>
batch_by_one
(
batch_size
,
1
);
Eigen
::
DSizes
<
int
,
2
>
one_by_class
(
1
,
num_classes
);
Eigen
::
DSizes
<
int
,
2
>
one_by_class
(
1
,
num_classes
);
Eigen
::
DSizes
<
int
,
3
>
batch_axis_remain
(
batch_size
,
axis_dim
,
num_remain
);
Eigen
::
DSizes
<
int
,
2
>
one_axis
(
1
,
axis_dim
);
auto
shifted_logits
=
(
logits
-
auto
shifted_logits
=
(
logits
-
logits
.
maximum
(
along_class
)
logits
.
maximum
(
along_class
)
...
@@ -60,11 +63,11 @@ void SoftmaxFunctor<DeviceContext, T, is_test, Enable>::operator()(
...
@@ -60,11 +63,11 @@ void SoftmaxFunctor<DeviceContext, T, is_test, Enable>::operator()(
softmax
.
device
(
*
context
.
eigen_device
())
=
shifted_logits
.
exp
();
softmax
.
device
(
*
context
.
eigen_device
())
=
shifted_logits
.
exp
();
softmax
.
device
(
*
context
.
eigen_device
())
=
(
softmax
*
softmax
.
device
(
*
context
.
eigen_device
())
=
(
softmax
*
softmax
.
sum
(
along_class
)
softmax
.
reshape
(
batch_axis_remain
)
.
sum
(
along_class
)
.
inverse
()
.
inverse
()
.
eval
()
.
eval
()
.
reshape
(
batch_by_one
)
.
broadcast
(
one_axis
));
.
broadcast
(
one_by_class
));
}
}
template
<
class
DeviceContext
>
template
<
class
DeviceContext
>
...
@@ -90,7 +93,7 @@ class SoftmaxFunctor<DeviceContext, float, true, enable_if_CPU<DeviceContext>> {
...
@@ -90,7 +93,7 @@ class SoftmaxFunctor<DeviceContext, float, true, enable_if_CPU<DeviceContext>> {
template
<
typename
DeviceContext
,
typename
T
>
template
<
typename
DeviceContext
,
typename
T
>
void
SoftmaxGradFunctor
<
DeviceContext
,
T
>::
operator
()(
void
SoftmaxGradFunctor
<
DeviceContext
,
T
>::
operator
()(
const
DeviceContext
&
context
,
const
framework
::
Tensor
*
y
,
const
DeviceContext
&
context
,
const
int
axis_dim
,
const
framework
::
Tensor
*
y
,
const
framework
::
Tensor
*
y_grad
,
framework
::
Tensor
*
x_grad
)
{
const
framework
::
Tensor
*
y_grad
,
framework
::
Tensor
*
x_grad
)
{
auto
softmax
=
EigenMatrix
<
T
>::
From
(
*
y
);
auto
softmax
=
EigenMatrix
<
T
>::
From
(
*
y
);
auto
softmax_grad
=
EigenMatrix
<
T
>::
From
(
*
y_grad
);
auto
softmax_grad
=
EigenMatrix
<
T
>::
From
(
*
y_grad
);
...
@@ -101,16 +104,19 @@ void SoftmaxGradFunctor<DeviceContext, T>::operator()(
...
@@ -101,16 +104,19 @@ void SoftmaxGradFunctor<DeviceContext, T>::operator()(
const
int
batch_size
=
softmax
.
dimension
(
kBatchDim
);
const
int
batch_size
=
softmax
.
dimension
(
kBatchDim
);
const
int
num_classes
=
softmax
.
dimension
(
kClassDim
);
const
int
num_classes
=
softmax
.
dimension
(
kClassDim
);
const
int
num_remain
=
num_classes
/
axis_dim
;
Eigen
::
DSizes
<
int
,
1
>
along_class
(
kClassDim
);
Eigen
::
DSizes
<
int
,
1
>
along_class
(
kClassDim
);
Eigen
::
DSizes
<
int
,
2
>
batch_by_one
(
batch_size
,
1
);
Eigen
::
DSizes
<
int
,
2
>
batch_by_one
(
batch_size
,
1
);
Eigen
::
DSizes
<
int
,
2
>
one_by_class
(
1
,
num_classes
);
Eigen
::
DSizes
<
int
,
2
>
one_by_class
(
1
,
num_classes
);
Eigen
::
DSizes
<
int
,
3
>
batch_axis_remain
(
batch_size
,
axis_dim
,
num_remain
);
Eigen
::
DSizes
<
int
,
2
>
one_axis
(
1
,
axis_dim
);
auto
dot
=
(
softmax
*
softmax_grad
)
auto
dot
=
(
softmax
*
softmax_grad
)
.
reshape
(
batch_axis_remain
)
.
sum
(
along_class
)
.
sum
(
along_class
)
.
eval
()
.
eval
()
.
reshape
(
batch_by_one
)
.
broadcast
(
one_axis
);
.
broadcast
(
one_by_class
);
logits_grad
.
device
(
*
context
.
eigen_device
())
=
(
softmax_grad
-
dot
)
*
softmax
;
logits_grad
.
device
(
*
context
.
eigen_device
())
=
(
softmax_grad
-
dot
)
*
softmax
;
}
}
...
...
paddle/fluid/operators/mkldnn/softmax_mkldnn_op.cc
浏览文件 @
6c641827
...
@@ -110,46 +110,28 @@ class SoftmaxMKLDNNKernel : public paddle::framework::OpKernel<T> {
...
@@ -110,46 +110,28 @@ class SoftmaxMKLDNNKernel : public paddle::framework::OpKernel<T> {
"It must use CPUPlace."
);
"It must use CPUPlace."
);
auto
&
dev_ctx
=
ctx
.
template
device_context
<
MKLDNNDeviceContext
>();
auto
&
dev_ctx
=
ctx
.
template
device_context
<
MKLDNNDeviceContext
>();
auto
mkldnn_engine
=
dev_ctx
.
GetEngine
();
auto
mkldnn_engine
=
dev_ctx
.
GetEngine
();
const
Tensor
*
X
=
ctx
.
Input
<
Tensor
>
(
"X"
);
const
Tensor
*
input
=
ctx
.
Input
<
Tensor
>
(
"X"
);
Tensor
*
O
ut
=
ctx
.
Output
<
Tensor
>
(
"Out"
);
Tensor
*
outp
ut
=
ctx
.
Output
<
Tensor
>
(
"Out"
);
PADDLE_ENFORCE_EQ
(
PADDLE_ENFORCE_EQ
(
X
->
dims
(),
O
ut
->
dims
(),
input
->
dims
(),
outp
ut
->
dims
(),
"The shape of softmax's input and output must be identical."
);
"The shape of softmax's input and output must be identical."
);
const
int
axis
=
ctx
.
Attr
<
int
>
(
"axis"
);
int
rank
=
X
->
dims
().
size
();
// make sure 'output' holds memory, which will be shared by
// make sure 'output' holds memory, which will be shared by
// 'flattened_output' later.
// 'flattened_output' later.
Out
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
output
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
std
::
vector
<
int
>
perm
,
shape
;
// flatten input and output to 2-D matrixs
CalcTransPermAndShapeByAxis
(
*
X
,
axis
,
&
perm
,
&
shape
);
auto
dims
=
input
->
dims
();
// input and output share the same shape
auto
flattened_dims
=
framework
::
flatten_to_2d
(
dims
,
dims
.
size
()
-
1
);
Tensor
X_2d
,
Out_2d
;
framework
::
Tensor
flattened_input
;
Tensor
X_trans
,
Out_trans
;
framework
::
Tensor
flattened_output
;
if
(
axis
!=
-
1
&&
axis
!=
rank
-
1
)
{
flattened_input
.
ShareDataWith
(
*
input
).
Resize
(
flattened_dims
);
X_trans
.
mutable_data
<
T
>
(
framework
::
make_ddim
(
shape
),
ctx
.
GetPlace
());
flattened_output
.
ShareDataWith
(
*
output
).
Resize
(
flattened_dims
);
Out_trans
.
mutable_data
<
T
>
(
framework
::
make_ddim
(
shape
),
ctx
.
GetPlace
());
TransCompute
<
platform
::
CPUDeviceContext
,
T
>
(
rank
,
dev_ctx
,
*
X
,
&
X_trans
,
perm
);
TransCompute
<
platform
::
CPUDeviceContext
,
T
>
(
rank
,
dev_ctx
,
*
Out
,
&
Out_trans
,
perm
);
auto
dims
=
X_trans
.
dims
();
auto
flattened_dims
=
framework
::
flatten_to_2d
(
dims
,
dims
.
size
()
-
1
);
X_2d
.
ShareDataWith
(
X_trans
).
Resize
(
flattened_dims
);
Out_2d
.
ShareDataWith
(
Out_trans
).
Resize
(
flattened_dims
);
}
else
{
auto
dims
=
X
->
dims
();
auto
flattened_dims
=
framework
::
flatten_to_2d
(
dims
,
dims
.
size
()
-
1
);
X_2d
.
ShareDataWith
(
*
X
).
Resize
(
flattened_dims
);
Out_2d
.
ShareDataWith
(
*
Out
).
Resize
(
flattened_dims
);
}
const
T
*
input_data
=
X_2d
.
data
<
T
>
();
const
T
*
input_data
=
flattened_input
.
data
<
T
>
();
T
*
output_data
=
Out_2d
.
mutable_data
<
T
>
(
ctx
.
GetPlace
());
T
*
output_data
=
flattened_output
.
mutable_data
<
T
>
(
ctx
.
GetPlace
());
std
::
vector
<
int
>
src_tz
=
paddle
::
framework
::
vectorize2int
(
X_2d
.
dims
()
);
std
::
vector
<
int
>
src_tz
=
paddle
::
framework
::
vectorize2int
(
flattened_dims
);
std
::
vector
<
int
>
dst_tz
=
src_tz
;
std
::
vector
<
int
>
dst_tz
=
src_tz
;
// Same memory descriptor to be used for input and output
// Same memory descriptor to be used for input and output
memory
::
dims
softmax_tz
=
{
src_tz
[
0
],
src_tz
[
1
]};
memory
::
dims
softmax_tz
=
{
src_tz
[
0
],
src_tz
[
1
]};
...
@@ -179,16 +161,10 @@ class SoftmaxMKLDNNKernel : public paddle::framework::OpKernel<T> {
...
@@ -179,16 +161,10 @@ class SoftmaxMKLDNNKernel : public paddle::framework::OpKernel<T> {
// We cannot use softmax_dst_memory_p to get prim desc as
// We cannot use softmax_dst_memory_p to get prim desc as
// it contains flattened dims (2D) while output tensor can
// it contains flattened dims (2D) while output tensor can
// have 2,3,4+ dims
// have 2,3,4+ dims
if
(
axis
!=
-
1
&&
axis
!=
rank
-
1
)
{
auto
output_mem_pd
=
paddle
::
platform
::
create_prim_desc_from_dims
(
auto
output_mem_pd
=
paddle
::
platform
::
create_prim_desc_from_dims
(
paddle
::
framework
::
vectorize2int
(
output
->
dims
()),
shape
,
mkldnn
::
memory
::
format
::
blocked
);
mkldnn
::
memory
::
format
::
blocked
);
Out_trans
.
set_mkldnn_prim_desc
(
output_mem_pd
);
output
->
set_mkldnn_prim_desc
(
output_mem_pd
);
}
else
{
auto
output_mem_pd
=
paddle
::
platform
::
create_prim_desc_from_dims
(
paddle
::
framework
::
vectorize2int
(
Out
->
dims
()),
mkldnn
::
memory
::
format
::
blocked
);
Out
->
set_mkldnn_prim_desc
(
output_mem_pd
);
}
std
::
vector
<
primitive
>
pipeline
{
std
::
vector
<
primitive
>
pipeline
{
*
(
static_cast
<
softmax_forward
::
primitive
*>
(
softmax_p
.
get
()))};
*
(
static_cast
<
softmax_forward
::
primitive
*>
(
softmax_p
.
get
()))};
...
@@ -202,11 +178,6 @@ class SoftmaxMKLDNNKernel : public paddle::framework::OpKernel<T> {
...
@@ -202,11 +178,6 @@ class SoftmaxMKLDNNKernel : public paddle::framework::OpKernel<T> {
output_data
[
i
]
<
threshold
?
threshold
:
output_data
[
i
];
output_data
[
i
]
<
threshold
?
threshold
:
output_data
[
i
];
}
}
}
}
if
(
axis
!=
-
1
&&
axis
!=
rank
-
1
)
{
TransCompute
<
platform
::
CPUDeviceContext
,
T
>
(
rank
,
dev_ctx
,
Out_trans
,
Out
,
perm
);
}
}
}
};
};
...
@@ -219,55 +190,33 @@ class SoftmaxMKLDNNGradKernel : public paddle::framework::OpKernel<T> {
...
@@ -219,55 +190,33 @@ class SoftmaxMKLDNNGradKernel : public paddle::framework::OpKernel<T> {
auto
&
dev_ctx
=
ctx
.
template
device_context
<
MKLDNNDeviceContext
>();
auto
&
dev_ctx
=
ctx
.
template
device_context
<
MKLDNNDeviceContext
>();
auto
mkldnn_engine
=
dev_ctx
.
GetEngine
();
auto
mkldnn_engine
=
dev_ctx
.
GetEngine
();
const
Tensor
*
O
ut
=
ctx
.
Input
<
Tensor
>
(
"Out"
);
const
Tensor
*
outp
ut
=
ctx
.
Input
<
Tensor
>
(
"Out"
);
auto
*
d
O
ut
=
ctx
.
template
Input
<
Tensor
>(
framework
::
GradVarName
(
"Out"
));
auto
*
d
o
ut
=
ctx
.
template
Input
<
Tensor
>(
framework
::
GradVarName
(
"Out"
));
auto
*
d
X
=
auto
*
d
x
=
ctx
.
template
Output
<
framework
::
Tensor
>(
framework
::
GradVarName
(
"X"
));
ctx
.
template
Output
<
framework
::
Tensor
>(
framework
::
GradVarName
(
"X"
));
PADDLE_ENFORCE_EQ
(
PADDLE_ENFORCE_EQ
(
d
Out
->
dims
(),
dX
->
dims
(),
d
out
->
dims
(),
dx
->
dims
(),
"The shape of softmax_grad's input and output must be identical."
);
"The shape of softmax_grad's input and output must be identical."
);
const
int
axis
=
ctx
.
Attr
<
int
>
(
"axis"
);
int
rank
=
Out
->
dims
().
size
();
// make sure 'dx' holds memory, which will be shared by 'flattened_dx'
// make sure 'dx' holds memory, which will be shared by 'flattened_dx'
// later.
// later.
dX
->
template
mutable_data
<
T
>(
ctx
.
GetPlace
());
dx
->
template
mutable_data
<
T
>(
ctx
.
GetPlace
());
std
::
vector
<
int
>
perm
,
shape
;
auto
dims
=
dout
->
dims
();
// input and output share the same shape
CalcTransPermAndShapeByAxis
(
*
dX
,
axis
,
&
perm
,
&
shape
);
auto
flattened_dims
=
framework
::
flatten_to_2d
(
dims
,
dims
.
size
()
-
1
);
framework
::
Tensor
flattened_output
;
Tensor
dX_2d
,
Out_2d
,
dOut_2d
;
framework
::
Tensor
flattened_dout
;
Tensor
dX_trans
,
Out_trans
,
dOut_trans
;
framework
::
Tensor
flattened_dx
;
if
(
axis
!=
-
1
&&
axis
!=
rank
-
1
)
{
flattened_output
.
ShareDataWith
(
*
output
).
Resize
(
flattened_dims
);
dX_trans
.
mutable_data
<
T
>
(
framework
::
make_ddim
(
shape
),
ctx
.
GetPlace
());
flattened_dout
.
ShareDataWith
(
*
dout
).
Resize
(
flattened_dims
);
Out_trans
.
mutable_data
<
T
>
(
framework
::
make_ddim
(
shape
),
ctx
.
GetPlace
());
flattened_dx
.
ShareDataWith
(
*
dx
).
Resize
(
flattened_dims
);
dOut_trans
.
mutable_data
<
T
>
(
framework
::
make_ddim
(
shape
),
ctx
.
GetPlace
());
TransCompute
<
platform
::
CPUDeviceContext
,
T
>
(
rank
,
dev_ctx
,
*
dX
,
&
dX_trans
,
const
T
*
dst_data
=
flattened_output
.
data
<
T
>
();
perm
);
const
T
*
diff_dst_ptr
=
flattened_dout
.
template
data
<
T
>();
TransCompute
<
platform
::
CPUDeviceContext
,
T
>
(
rank
,
dev_ctx
,
*
Out
,
T
*
diff_src_ptr
=
flattened_dx
.
template
mutable_data
<
T
>(
ctx
.
GetPlace
());
&
Out_trans
,
perm
);
TransCompute
<
platform
::
CPUDeviceContext
,
T
>
(
rank
,
dev_ctx
,
*
dOut
,
std
::
vector
<
int
>
dst_tz
=
paddle
::
framework
::
vectorize2int
(
flattened_dims
);
&
dOut_trans
,
perm
);
auto
dims
=
dX_trans
.
dims
();
auto
flattened_dims
=
framework
::
flatten_to_2d
(
dims
,
dims
.
size
()
-
1
);
dX_2d
.
ShareDataWith
(
dX_trans
).
Resize
(
flattened_dims
);
Out_2d
.
ShareDataWith
(
Out_trans
).
Resize
(
flattened_dims
);
dOut_2d
.
ShareDataWith
(
dOut_trans
).
Resize
(
flattened_dims
);
}
else
{
auto
dims
=
dX
->
dims
();
auto
flattened_dims
=
framework
::
flatten_to_2d
(
dims
,
dims
.
size
()
-
1
);
dX_2d
.
ShareDataWith
(
*
dX
).
Resize
(
flattened_dims
);
Out_2d
.
ShareDataWith
(
*
Out
).
Resize
(
flattened_dims
);
dOut_2d
.
ShareDataWith
(
*
dOut
).
Resize
(
flattened_dims
);
}
const
T
*
dst_data
=
Out_2d
.
data
<
T
>
();
const
T
*
diff_dst_ptr
=
dOut_2d
.
template
data
<
T
>();
T
*
diff_src_ptr
=
dX_2d
.
template
mutable_data
<
T
>(
ctx
.
GetPlace
());
std
::
vector
<
int
>
dst_tz
=
paddle
::
framework
::
vectorize2int
(
Out_2d
.
dims
());
std
::
vector
<
int
>
src_tz
(
dst_tz
);
std
::
vector
<
int
>
src_tz
(
dst_tz
);
// Same memory descriptor to be used for input and output
// Same memory descriptor to be used for input and output
...
@@ -312,11 +261,6 @@ class SoftmaxMKLDNNGradKernel : public paddle::framework::OpKernel<T> {
...
@@ -312,11 +261,6 @@ class SoftmaxMKLDNNGradKernel : public paddle::framework::OpKernel<T> {
std
::
vector
<
primitive
>
pipeline
{
*
softmax_bwd_p
};
std
::
vector
<
primitive
>
pipeline
{
*
softmax_bwd_p
};
stream
(
stream
::
kind
::
eager
).
submit
(
pipeline
).
wait
();
stream
(
stream
::
kind
::
eager
).
submit
(
pipeline
).
wait
();
if
(
axis
!=
-
1
&&
axis
!=
rank
-
1
)
{
TransCompute
<
platform
::
CPUDeviceContext
,
T
>
(
rank
,
dev_ctx
,
dX_trans
,
dX
,
perm
);
}
}
}
};
};
}
// namespace operators
}
// namespace operators
...
...
paddle/fluid/operators/softmax_cudnn_op.cu.cc
浏览文件 @
6c641827
...
@@ -14,7 +14,6 @@ limitations under the License. */
...
@@ -14,7 +14,6 @@ limitations under the License. */
#include "paddle/fluid/operators/math/softmax.h"
#include "paddle/fluid/operators/math/softmax.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/operators/softmax_op.h"
namespace
paddle
{
namespace
paddle
{
namespace
operators
{
namespace
operators
{
...
@@ -25,44 +24,22 @@ template <typename T>
...
@@ -25,44 +24,22 @@ template <typename T>
class
SoftmaxCUDNNKernel
:
public
framework
::
OpKernel
<
T
>
{
class
SoftmaxCUDNNKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
public:
void
Compute
(
const
framework
::
ExecutionContext
&
context
)
const
override
{
void
Compute
(
const
framework
::
ExecutionContext
&
context
)
const
override
{
auto
&
dev_ctx
=
context
.
template
device_context
<
platform
::
CUDADeviceContext
>();
auto
*
X
=
context
.
Input
<
Tensor
>
(
"X"
);
auto
*
X
=
context
.
Input
<
Tensor
>
(
"X"
);
auto
*
Out
=
context
.
Output
<
Tensor
>
(
"Out"
);
auto
*
Out
=
context
.
Output
<
Tensor
>
(
"Out"
);
const
int
axis
=
context
.
Attr
<
int
>
(
"axis"
);
int
rank
=
X
->
dims
().
size
();
// allocate memory on device.
// allocate memory on device.
Out
->
mutable_data
<
T
>
(
context
.
GetPlace
());
Out
->
mutable_data
<
T
>
(
context
.
GetPlace
());
std
::
vector
<
int
>
perm
,
shape
;
auto
dims
=
X
->
dims
();
CalcTransPermAndShapeByAxis
(
*
X
,
axis
,
&
perm
,
&
shape
);
auto
flattened_dims
=
framework
::
flatten_to_2d
(
dims
,
dims
.
size
()
-
1
);
framework
::
LoDTensor
flattened_x
;
Tensor
X_2d
,
Out_2d
;
framework
::
LoDTensor
flattened_out
;
Tensor
X_trans
,
Out_trans
;
flattened_x
.
ShareDataWith
(
*
X
).
Resize
(
flattened_dims
);
if
(
axis
!=
-
1
&&
axis
!=
rank
-
1
)
{
flattened_out
.
ShareDataWith
(
*
Out
).
Resize
(
flattened_dims
);
X_trans
.
mutable_data
<
T
>
(
framework
::
make_ddim
(
shape
),
context
.
GetPlace
());
Out_trans
.
mutable_data
<
T
>
(
framework
::
make_ddim
(
shape
),
context
.
GetPlace
());
TransCompute
<
platform
::
CUDADeviceContext
,
T
>
(
rank
,
dev_ctx
,
*
X
,
&
X_trans
,
perm
);
TransCompute
<
platform
::
CUDADeviceContext
,
T
>
(
rank
,
dev_ctx
,
*
Out
,
&
Out_trans
,
perm
);
X_2d
=
framework
::
ReshapeToMatrix
(
X_trans
,
rank
-
1
);
Out_2d
=
framework
::
ReshapeToMatrix
(
Out_trans
,
rank
-
1
);
}
else
{
X_2d
=
framework
::
ReshapeToMatrix
(
*
X
,
rank
-
1
);
Out_2d
=
framework
::
ReshapeToMatrix
(
*
Out
,
rank
-
1
);
}
math
::
SoftmaxCUDNNFunctor
<
T
>
()(
math
::
SoftmaxCUDNNFunctor
<
T
>
()(
context
.
template
device_context
<
platform
::
CUDADeviceContext
>(),
&
X_2d
,
context
.
template
device_context
<
platform
::
CUDADeviceContext
>(),
&
Out_2d
);
&
flattened_x
,
&
flattened_out
);
if
(
axis
!=
-
1
&&
axis
!=
rank
-
1
)
{
TransCompute
<
platform
::
CUDADeviceContext
,
T
>
(
rank
,
dev_ctx
,
Out_trans
,
Out
,
perm
);
}
}
}
};
};
...
@@ -70,51 +47,25 @@ template <typename T>
...
@@ -70,51 +47,25 @@ template <typename T>
class
SoftmaxGradCUDNNKernel
:
public
framework
::
OpKernel
<
T
>
{
class
SoftmaxGradCUDNNKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
public:
void
Compute
(
const
framework
::
ExecutionContext
&
context
)
const
override
{
void
Compute
(
const
framework
::
ExecutionContext
&
context
)
const
override
{
auto
&
dev_ctx
=
context
.
template
device_context
<
platform
::
CUDADeviceContext
>();
auto
*
Out
=
context
.
Input
<
Tensor
>
(
"Out"
);
auto
*
Out
=
context
.
Input
<
Tensor
>
(
"Out"
);
auto
*
dOut
=
context
.
Input
<
Tensor
>
(
framework
::
GradVarName
(
"Out"
));
auto
*
dOut
=
context
.
Input
<
Tensor
>
(
framework
::
GradVarName
(
"Out"
));
auto
*
dX
=
context
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"X"
));
auto
*
dX
=
context
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"X"
));
const
int
axis
=
context
.
Attr
<
int
>
(
"axis"
);
int
rank
=
Out
->
dims
().
size
();
// allocate memory on device.
// allocate memory on device.
dX
->
mutable_data
<
T
>
(
context
.
GetPlace
());
dX
->
mutable_data
<
T
>
(
context
.
GetPlace
());
std
::
vector
<
int
>
perm
,
shape
;
auto
dims
=
Out
->
dims
();
CalcTransPermAndShapeByAxis
(
*
dX
,
axis
,
&
perm
,
&
shape
);
auto
flattened_dims
=
framework
::
flatten_to_2d
(
dims
,
dims
.
size
()
-
1
);
framework
::
LoDTensor
flattened_out
;
Tensor
dX_2d
,
Out_2d
,
dOut_2d
;
framework
::
LoDTensor
flattened_d_out
;
Tensor
dX_trans
,
Out_trans
,
dOut_trans
;
framework
::
LoDTensor
flattened_d_x
;
if
(
axis
!=
-
1
&&
axis
!=
rank
-
1
)
{
flattened_out
.
ShareDataWith
(
*
Out
).
Resize
(
flattened_dims
);
dX_trans
.
mutable_data
<
T
>
(
framework
::
make_ddim
(
shape
),
context
.
GetPlace
());
flattened_d_out
.
ShareDataWith
(
*
dOut
).
Resize
(
flattened_dims
);
Out_trans
.
mutable_data
<
T
>
(
framework
::
make_ddim
(
shape
),
flattened_d_x
.
ShareDataWith
(
*
dX
).
Resize
(
flattened_dims
);
context
.
GetPlace
());
dOut_trans
.
mutable_data
<
T
>
(
framework
::
make_ddim
(
shape
),
context
.
GetPlace
());
TransCompute
<
platform
::
CUDADeviceContext
,
T
>
(
rank
,
dev_ctx
,
*
dX
,
&
dX_trans
,
perm
);
TransCompute
<
platform
::
CUDADeviceContext
,
T
>
(
rank
,
dev_ctx
,
*
Out
,
&
Out_trans
,
perm
);
TransCompute
<
platform
::
CUDADeviceContext
,
T
>
(
rank
,
dev_ctx
,
*
dOut
,
&
dOut_trans
,
perm
);
dX_2d
=
framework
::
ReshapeToMatrix
(
dX_trans
,
rank
-
1
);
Out_2d
=
framework
::
ReshapeToMatrix
(
Out_trans
,
rank
-
1
);
dOut_2d
=
framework
::
ReshapeToMatrix
(
dOut_trans
,
rank
-
1
);
}
else
{
dX_2d
=
framework
::
ReshapeToMatrix
(
*
dX
,
rank
-
1
);
Out_2d
=
framework
::
ReshapeToMatrix
(
*
Out
,
rank
-
1
);
dOut_2d
=
framework
::
ReshapeToMatrix
(
*
dOut
,
rank
-
1
);
}
math
::
SoftmaxGradCUDNNFunctor
<
T
>
()(
math
::
SoftmaxGradCUDNNFunctor
<
T
>
()(
context
.
template
device_context
<
platform
::
CUDADeviceContext
>(),
&
Out_2d
,
context
.
template
device_context
<
platform
::
CUDADeviceContext
>(),
&
dOut_2d
,
&
dX_2d
);
&
flattened_out
,
&
flattened_d_out
,
&
flattened_d_x
);
if
(
axis
!=
-
1
&&
axis
!=
rank
-
1
)
{
TransCompute
<
platform
::
CUDADeviceContext
,
T
>
(
rank
,
dev_ctx
,
dX_trans
,
dX
,
perm
);
}
}
}
};
};
...
...
paddle/fluid/operators/softmax_op.h
浏览文件 @
6c641827
...
@@ -13,81 +13,66 @@ See the License for the specific language governing permissions and
...
@@ -13,81 +13,66 @@ See the License for the specific language governing permissions and
limitations under the License. */
limitations under the License. */
#pragma once
#pragma once
#include <vector>
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/operators/math/softmax.h"
#include "paddle/fluid/operators/math/softmax.h"
#include "paddle/fluid/operators/transpose_op.h"
namespace
paddle
{
namespace
paddle
{
namespace
operators
{
namespace
operators
{
using
Tensor
=
framework
::
Tensor
;
using
Tensor
=
framework
::
Tensor
;
using
DDim
=
framework
::
DDim
;
static
inline
void
CalcTransPermAndShapeByAxis
(
const
Tensor
&
x
,
const
int
axis
,
static
inline
int
CanonicalAxis
(
const
int
axis
,
const
int
rank
)
{
std
::
vector
<
int
>*
perm
,
if
(
axis
<
0
)
{
std
::
vector
<
int
>*
shape
)
{
return
axis
+
rank
;
auto
dim_x
=
x
.
dims
();
}
int
rank
=
dim_x
.
size
();
return
axis
;
}
if
(
axis
==
-
1
||
axis
==
rank
-
1
)
{
static
inline
int
SizeToAxis
(
const
int
axis
,
DDim
dims
)
{
return
;
int
size
=
1
;
for
(
int
i
=
0
;
i
<
axis
;
i
++
)
{
size
*=
dims
[
i
];
}
}
return
size
;
}
for
(
int
i
=
0
;
i
<
rank
-
1
;
i
++
)
{
static
inline
int
SizeFromAxis
(
const
int
axis
,
DDim
dims
)
{
if
(
i
==
axis
)
{
int
size
=
1
;
perm
->
push_back
(
rank
-
1
);
for
(
int
i
=
axis
;
i
<
dims
.
size
();
i
++
)
{
shape
->
push_back
(
dim_x
[
rank
-
1
]);
size
*=
dims
[
i
];
}
else
{
perm
->
push_back
(
i
);
shape
->
push_back
(
dim_x
[
i
]);
}
}
}
perm
->
push_back
(
axis
);
return
size
;
shape
->
push_back
(
dim_x
[
axis
]);
}
}
template
<
typename
DeviceContext
,
typename
T
>
template
<
typename
DeviceContext
,
typename
T
>
class
SoftmaxKernel
:
public
framework
::
OpKernel
<
T
>
{
class
SoftmaxKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
public:
void
Compute
(
const
framework
::
ExecutionContext
&
context
)
const
override
{
void
Compute
(
const
framework
::
ExecutionContext
&
context
)
const
override
{
auto
&
dev_ctx
=
context
.
template
device_context
<
DeviceContext
>();
auto
*
X
=
context
.
Input
<
Tensor
>
(
"X"
);
auto
*
X
=
context
.
Input
<
Tensor
>
(
"X"
);
auto
*
Out
=
context
.
Output
<
Tensor
>
(
"Out"
);
auto
*
Out
=
context
.
Output
<
Tensor
>
(
"Out"
);
const
int
axis
=
context
.
Attr
<
int
>
(
"axis"
);
const
int
rank
=
X
->
dims
().
size
();
int
rank
=
X
->
dims
().
size
();
const
int
axis
=
CanonicalAxis
(
context
.
Attr
<
int
>
(
"axis"
),
rank
);
int
axis_dim
=
X
->
dims
()[
axis
];
// allocate memory on device.
// allocate memory on device.
Out
->
mutable_data
<
T
>
(
context
.
GetPlace
());
Out
->
mutable_data
<
T
>
(
context
.
GetPlace
());
std
::
vector
<
int
>
perm
,
shape
;
const
int
n
=
SizeToAxis
(
axis
,
X
->
dims
());
CalcTransPermAndShapeByAxis
(
*
X
,
axis
,
&
perm
,
&
shape
);
const
int
d
=
SizeFromAxis
(
axis
,
X
->
dims
());
Tensor
X_2d
,
Out_2d
;
Tensor
X_2d
,
Out_2d
;
Tensor
X_trans
,
Out_trans
;
X_2d
.
ShareDataWith
(
*
X
).
Resize
({
n
,
d
});
if
(
axis
!=
-
1
&&
axis
!=
rank
-
1
)
{
Out_2d
.
ShareDataWith
(
*
Out
).
Resize
({
n
,
d
});
X_trans
.
mutable_data
<
T
>
(
framework
::
make_ddim
(
shape
),
context
.
GetPlace
());
// Tensor X_2d = framework::ReshapeToMatrix(*X, axis - 1);
Out_trans
.
mutable_data
<
T
>
(
framework
::
make_ddim
(
shape
),
// Tensor Out_2d = framework::ReshapeToMatrix(*Out, axis - 1);
context
.
GetPlace
());
TransCompute
<
DeviceContext
,
T
>
(
rank
,
dev_ctx
,
*
X
,
&
X_trans
,
perm
);
TransCompute
<
DeviceContext
,
T
>
(
rank
,
dev_ctx
,
*
Out
,
&
Out_trans
,
perm
);
X_2d
=
framework
::
ReshapeToMatrix
(
X_trans
,
rank
-
1
);
Out_2d
=
framework
::
ReshapeToMatrix
(
Out_trans
,
rank
-
1
);
}
else
{
X_2d
=
framework
::
ReshapeToMatrix
(
*
X
,
rank
-
1
);
Out_2d
=
framework
::
ReshapeToMatrix
(
*
Out
,
rank
-
1
);
}
#ifdef PADDLE_ON_INFERENCE
#ifdef PADDLE_ON_INFERENCE
math
::
SoftmaxFunctor
<
DeviceContext
,
T
,
true
>
()(
math
::
SoftmaxFunctor
<
DeviceContext
,
T
,
true
>
()(
context
.
template
device_context
<
DeviceContext
>(),
&
X_2d
,
&
Out_2d
);
context
.
template
device_context
<
DeviceContext
>(),
axis_dim
,
&
X_2d
,
&
Out_2d
);
#else
#else
math
::
SoftmaxFunctor
<
DeviceContext
,
T
,
false
>
()(
math
::
SoftmaxFunctor
<
DeviceContext
,
T
,
false
>
()(
context
.
template
device_context
<
DeviceContext
>(),
&
X_2d
,
&
Out_2d
);
context
.
template
device_context
<
DeviceContext
>(),
axis_dim
,
&
X_2d
,
&
Out_2d
);
#endif
#endif
if
(
axis
!=
-
1
&&
axis
!=
rank
-
1
)
{
TransCompute
<
DeviceContext
,
T
>
(
rank
,
dev_ctx
,
Out_trans
,
Out
,
perm
);
}
}
}
};
};
...
@@ -95,46 +80,29 @@ template <typename DeviceContext, typename T>
...
@@ -95,46 +80,29 @@ template <typename DeviceContext, typename T>
class
SoftmaxGradKernel
:
public
framework
::
OpKernel
<
T
>
{
class
SoftmaxGradKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
public:
void
Compute
(
const
framework
::
ExecutionContext
&
context
)
const
override
{
void
Compute
(
const
framework
::
ExecutionContext
&
context
)
const
override
{
auto
&
dev_ctx
=
context
.
template
device_context
<
DeviceContext
>();
auto
*
Out
=
context
.
Input
<
Tensor
>
(
"Out"
);
auto
*
Out
=
context
.
Input
<
Tensor
>
(
"Out"
);
auto
*
dOut
=
context
.
Input
<
Tensor
>
(
framework
::
GradVarName
(
"Out"
));
auto
*
dOut
=
context
.
Input
<
Tensor
>
(
framework
::
GradVarName
(
"Out"
));
auto
*
dX
=
context
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"X"
));
auto
*
dX
=
context
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"X"
));
const
int
axis
=
context
.
Attr
<
int
>
(
"axis"
);
const
int
rank
=
dX
->
dims
().
size
();
int
rank
=
Out
->
dims
().
size
();
const
int
axis
=
CanonicalAxis
(
context
.
Attr
<
int
>
(
"axis"
),
rank
);
int
axis_dim
=
dX
->
dims
()[
axis
];
// allocate memory on device.
// allocate memory on device.
dX
->
mutable_data
<
T
>
(
context
.
GetPlace
());
dX
->
mutable_data
<
T
>
(
context
.
GetPlace
());
std
::
vector
<
int
>
perm
,
shape
;
const
int
n
=
SizeToAxis
(
axis
,
dX
->
dims
());
CalcTransPermAndShapeByAxis
(
*
dX
,
axis
,
&
perm
,
&
shape
);
const
int
d
=
SizeFromAxis
(
axis
,
dX
->
dims
());
Tensor
dX_2d
,
Out_2d
,
dOut_2d
;
Tensor
dX_2d
,
Out_2d
,
dOut_2d
;
Tensor
dX_trans
,
Out_trans
,
dOut_trans
;
dX_2d
.
ShareDataWith
(
*
dX
).
Resize
({
n
,
d
});
if
(
axis
!=
-
1
&&
axis
!=
rank
-
1
)
{
Out_2d
.
ShareDataWith
(
*
Out
).
Resize
({
n
,
d
});
dX_trans
.
mutable_data
<
T
>
(
framework
::
make_ddim
(
shape
),
context
.
GetPlace
());
dOut_2d
.
ShareDataWith
(
*
dOut
).
Resize
({
n
,
d
});
Out_trans
.
mutable_data
<
T
>
(
framework
::
make_ddim
(
shape
),
// Tensor Out_2d = framework::ReshapeToMatrix(*Out, axis - 1);
context
.
GetPlace
());
// Tensor dOut_2d = framework::ReshapeToMatrix(*dOut, axis - 1);
dOut_trans
.
mutable_data
<
T
>
(
framework
::
make_ddim
(
shape
),
// Tensor dX_2d = framework::ReshapeToMatrix(*dX, axis - 1);
context
.
GetPlace
());
TransCompute
<
DeviceContext
,
T
>
(
rank
,
dev_ctx
,
*
dX
,
&
dX_trans
,
perm
);
TransCompute
<
DeviceContext
,
T
>
(
rank
,
dev_ctx
,
*
Out
,
&
Out_trans
,
perm
);
TransCompute
<
DeviceContext
,
T
>
(
rank
,
dev_ctx
,
*
dOut
,
&
dOut_trans
,
perm
);
dX_2d
=
framework
::
ReshapeToMatrix
(
dX_trans
,
rank
-
1
);
Out_2d
=
framework
::
ReshapeToMatrix
(
Out_trans
,
rank
-
1
);
dOut_2d
=
framework
::
ReshapeToMatrix
(
dOut_trans
,
rank
-
1
);
}
else
{
dX_2d
=
framework
::
ReshapeToMatrix
(
*
dX
,
rank
-
1
);
Out_2d
=
framework
::
ReshapeToMatrix
(
*
Out
,
rank
-
1
);
dOut_2d
=
framework
::
ReshapeToMatrix
(
*
dOut
,
rank
-
1
);
}
math
::
SoftmaxGradFunctor
<
DeviceContext
,
T
>
()(
math
::
SoftmaxGradFunctor
<
DeviceContext
,
T
>
()(
context
.
template
device_context
<
DeviceContext
>(),
&
Out_2d
,
&
dOut_2d
,
context
.
template
device_context
<
DeviceContext
>(),
axis_dim
,
&
Out_2d
,
&
dOut_2d
,
&
dX_2d
);
&
dX_2d
);
if
(
axis
!=
-
1
&&
axis
!=
rank
-
1
)
{
TransCompute
<
DeviceContext
,
T
>
(
rank
,
dev_ctx
,
dX_trans
,
dX
,
perm
);
}
}
}
};
};
...
...
paddle/fluid/operators/softmax_with_cross_entropy_op.h
浏览文件 @
6c641827
...
@@ -43,7 +43,7 @@ class SoftmaxWithCrossEntropyKernel : public framework::OpKernel<T> {
...
@@ -43,7 +43,7 @@ class SoftmaxWithCrossEntropyKernel : public framework::OpKernel<T> {
auto
&
dev_ctx
=
auto
&
dev_ctx
=
context
.
template
device_context
<
platform
::
CPUDeviceContext
>();
context
.
template
device_context
<
platform
::
CPUDeviceContext
>();
math
::
SoftmaxFunctor
<
platform
::
CPUDeviceContext
,
T
,
false
>
()(
math
::
SoftmaxFunctor
<
platform
::
CPUDeviceContext
,
T
,
false
>
()(
dev_ctx
,
logits
,
softmax
);
dev_ctx
,
-
1
,
logits
,
softmax
);
math
::
CrossEntropyFunctor
<
platform
::
CPUDeviceContext
,
T
>
()(
math
::
CrossEntropyFunctor
<
platform
::
CPUDeviceContext
,
T
>
()(
dev_ctx
,
loss
,
softmax
,
labels
,
context
.
Attr
<
bool
>
(
"soft_label"
),
dev_ctx
,
loss
,
softmax
,
labels
,
context
.
Attr
<
bool
>
(
"soft_label"
),
context
.
Attr
<
int
>
(
"ignore_index"
));
context
.
Attr
<
int
>
(
"ignore_index"
));
...
...
paddle/fluid/operators/warpctc_cudnn_op.cu.cc
浏览文件 @
6c641827
...
@@ -69,7 +69,7 @@ class CudnnCTCKernel : public framework::OpKernel<T> {
...
@@ -69,7 +69,7 @@ class CudnnCTCKernel : public framework::OpKernel<T> {
int
rank
=
logits
->
dims
().
size
();
int
rank
=
logits
->
dims
().
size
();
Tensor
in_2d
=
framework
::
ReshapeToMatrix
(
*
logits
,
rank
-
1
);
Tensor
in_2d
=
framework
::
ReshapeToMatrix
(
*
logits
,
rank
-
1
);
Tensor
out_2d
=
framework
::
ReshapeToMatrix
(
softmax_logits
,
rank
-
1
);
Tensor
out_2d
=
framework
::
ReshapeToMatrix
(
softmax_logits
,
rank
-
1
);
math
::
SoftmaxFunctor
<
DeviceContext
,
T
,
false
>
()(
dev_ctx
,
&
in_2d
,
&
out_2d
);
math
::
SoftmaxFunctor
<
DeviceContext
,
T
,
false
>
()(
dev_ctx
,
-
1
,
&
in_2d
,
&
out_2d
);
// ctc needs sequences data stored in transposed padding format
// ctc needs sequences data stored in transposed padding format
// logits and grad using padding data of layout 'TNC'
// logits and grad using padding data of layout 'TNC'
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录