Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleDetection
提交
6b3c33d0
P
PaddleDetection
项目概览
PaddlePaddle
/
PaddleDetection
大约 1 年 前同步成功
通知
695
Star
11112
Fork
2696
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
184
列表
看板
标记
里程碑
合并请求
40
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
184
Issue
184
列表
看板
标记
里程碑
合并请求
40
合并请求
40
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
6b3c33d0
编写于
6月 22, 2017
作者:
C
Cao Ying
提交者:
GitHub
6月 22, 2017
浏览文件
操作
浏览文件
下载
差异文件
Merge pull request #2523 from emailweixu/rnn_evaluator
evaluator for recurrent group.
上级
d524acc6
02cc7d90
变更
4
隐藏空白更改
内联
并排
Showing
4 changed file
with
38 addition
and
21 deletion
+38
-21
paddle/gserver/gradientmachines/NeuralNetwork.cpp
paddle/gserver/gradientmachines/NeuralNetwork.cpp
+34
-1
paddle/gserver/gradientmachines/NeuralNetwork.h
paddle/gserver/gradientmachines/NeuralNetwork.h
+2
-0
paddle/gserver/gradientmachines/RecurrentGradientMachine.cpp
paddle/gserver/gradientmachines/RecurrentGradientMachine.cpp
+2
-18
paddle/gserver/gradientmachines/RecurrentGradientMachine.h
paddle/gserver/gradientmachines/RecurrentGradientMachine.h
+0
-2
未找到文件。
paddle/gserver/gradientmachines/NeuralNetwork.cpp
浏览文件 @
6b3c33d0
...
@@ -321,7 +321,7 @@ public:
...
@@ -321,7 +321,7 @@ public:
}
}
}
}
virtual
void
eval
(
const
NeuralNetwork
&
nn
)
{
virtual
void
eval
(
const
NeuralNetwork
&
nn
)
override
{
for
(
auto
&
evaluator
:
evaluators_
)
{
for
(
auto
&
evaluator
:
evaluators_
)
{
evaluator
->
eval
(
nn
);
evaluator
->
eval
(
nn
);
}
}
...
@@ -396,6 +396,30 @@ private:
...
@@ -396,6 +396,30 @@ private:
}
}
};
};
class
SubnetEvaluator
:
public
CombinedEvaluator
{
public:
SubnetEvaluator
(
const
std
::
string
&
layerName
,
std
::
unique_ptr
<
Evaluator
>&&
evaluator
)
:
layerName_
(
layerName
)
{
addEvaluator
(
std
::
move
(
evaluator
));
}
virtual
void
eval
(
const
NeuralNetwork
&
nn
)
override
{
const
LayerPtr
&
layer
=
nn
.
getLayer
(
layerName_
);
CHECK
(
layer
)
<<
"Nonexisted layer: "
<<
layerName_
<<
" in submodel "
<<
nn
.
getName
();
bool
accessed
=
false
;
layer
->
accessSubNetwork
([
this
,
&
accessed
](
NeuralNetwork
&
subnet
)
{
subnet
.
eval
(
evaluators_
[
0
].
get
());
accessed
=
true
;
});
CHECK
(
accessed
)
<<
"There is no subnetwork for layer "
<<
layerName_
<<
" in submodel "
<<
nn
.
getName
();
}
protected:
std
::
string
layerName_
;
};
Evaluator
*
NeuralNetwork
::
makeEvaluator
()
const
{
Evaluator
*
NeuralNetwork
::
makeEvaluator
()
const
{
CombinedEvaluator
*
combinedEvaluator
=
new
CombinedEvaluator
();
CombinedEvaluator
*
combinedEvaluator
=
new
CombinedEvaluator
();
auto
subModelConfig
=
std
::
find_if
(
config_
.
sub_models
().
begin
(),
auto
subModelConfig
=
std
::
find_if
(
config_
.
sub_models
().
begin
(),
...
@@ -422,6 +446,15 @@ Evaluator* NeuralNetwork::makeEvaluator() const {
...
@@ -422,6 +446,15 @@ Evaluator* NeuralNetwork::makeEvaluator() const {
combinedEvaluator
->
addEvaluator
(
std
::
move
(
evaluator
));
combinedEvaluator
->
addEvaluator
(
std
::
move
(
evaluator
));
}
}
}
}
for
(
auto
&
layer
:
layers_
)
{
layer
->
accessSubNetwork
(
[
layer
,
combinedEvaluator
](
NeuralNetwork
&
subnet
)
{
std
::
unique_ptr
<
Evaluator
>
subEvaluator
(
new
SubnetEvaluator
(
layer
->
getName
(),
std
::
unique_ptr
<
Evaluator
>
(
subnet
.
makeEvaluator
())));
combinedEvaluator
->
addEvaluator
(
std
::
move
(
subEvaluator
));
});
}
}
else
{
}
else
{
for
(
const
EvaluatorConfig
&
evalConfig
:
config_
.
evaluators
())
{
for
(
const
EvaluatorConfig
&
evalConfig
:
config_
.
evaluators
())
{
std
::
unique_ptr
<
Evaluator
>
evaluator
(
Evaluator
::
create
(
evalConfig
));
std
::
unique_ptr
<
Evaluator
>
evaluator
(
Evaluator
::
create
(
evalConfig
));
...
...
paddle/gserver/gradientmachines/NeuralNetwork.h
浏览文件 @
6b3c33d0
...
@@ -129,6 +129,8 @@ public:
...
@@ -129,6 +129,8 @@ public:
static
NeuralNetwork
*
newNeuralNetwork
(
const
std
::
string
&
name
=
""
,
static
NeuralNetwork
*
newNeuralNetwork
(
const
std
::
string
&
name
=
""
,
NeuralNetwork
*
rootNetwork
=
nullptr
);
NeuralNetwork
*
rootNetwork
=
nullptr
);
const
std
::
string
&
getName
()
const
{
return
subModelName_
;
}
protected:
protected:
/**
/**
* The constructor of NeuralNetwork.
* The constructor of NeuralNetwork.
...
...
paddle/gserver/gradientmachines/RecurrentGradientMachine.cpp
浏览文件 @
6b3c33d0
...
@@ -288,10 +288,6 @@ void RecurrentGradientMachine::init(
...
@@ -288,10 +288,6 @@ void RecurrentGradientMachine::init(
parameterIds_
.
push_back
(
para
->
getID
());
parameterIds_
.
push_back
(
para
->
getID
());
}
}
}
}
if
(
subModelConfig
->
evaluator_names_size
()
>
0
)
{
evaluator_
.
reset
(
frames_
[
0
]
->
makeEvaluator
());
}
}
}
void
RecurrentGradientMachine
::
resizeOrCreateFrames
(
int
numFrames
)
{
void
RecurrentGradientMachine
::
resizeOrCreateFrames
(
int
numFrames
)
{
...
@@ -562,9 +558,6 @@ void RecurrentGradientMachine::forward(const std::vector<Argument>& inArgs,
...
@@ -562,9 +558,6 @@ void RecurrentGradientMachine::forward(const std::vector<Argument>& inArgs,
std
::
vector
<
Argument
>
outArgs
;
std
::
vector
<
Argument
>
outArgs
;
frames_
[
i
]
->
forward
(
inArgs
,
&
outArgs
,
passType
);
frames_
[
i
]
->
forward
(
inArgs
,
&
outArgs
,
passType
);
}
}
if
(
evaluator_
&&
passType
==
PASS_TEST
)
{
this
->
eval
(
evaluator_
.
get
());
}
reorganizeOutput
(
passType
);
reorganizeOutput
(
passType
);
}
}
...
@@ -581,11 +574,6 @@ void RecurrentGradientMachine::backward(const UpdateCallback& callback) {
...
@@ -581,11 +574,6 @@ void RecurrentGradientMachine::backward(const UpdateCallback& callback) {
for
(
auto
&
memoryFrameLine
:
memoryFrameLines_
)
{
for
(
auto
&
memoryFrameLine
:
memoryFrameLines_
)
{
memoryFrameLine
.
bootLayer
->
backward
(
nullptr
);
memoryFrameLine
.
bootLayer
->
backward
(
nullptr
);
}
}
// call printers here so the gradient can be printed
if
(
evaluator_
)
{
this
->
eval
(
evaluator_
.
get
());
}
}
}
void
RecurrentGradientMachine
::
forwardBackward
(
void
RecurrentGradientMachine
::
forwardBackward
(
...
@@ -599,9 +587,9 @@ void RecurrentGradientMachine::forwardBackward(
...
@@ -599,9 +587,9 @@ void RecurrentGradientMachine::forwardBackward(
void
RecurrentGradientMachine
::
eval
(
Evaluator
*
evaluator
)
const
{
void
RecurrentGradientMachine
::
eval
(
Evaluator
*
evaluator
)
const
{
// call printers frame by frame
// call printers frame by frame
for
(
int
i
=
0
;
i
<
maxSequenceLength_
;
++
i
)
{
for
(
int
i
=
0
;
i
<
maxSequenceLength_
;
++
i
)
{
LOG
(
INFO
)
<<
"Recurrent Layer Group eval frame "
<<
i
<<
" begin"
;
VLOG
(
2
)
<<
"Recurrent Layer Group eval frame "
<<
i
<<
" begin"
;
evaluator
->
eval
(
*
(
frames_
[
i
].
get
()));
evaluator
->
eval
(
*
(
frames_
[
i
].
get
()));
LOG
(
INFO
)
<<
"Recurrent Layer Group eval frame "
<<
i
<<
" end"
;
VLOG
(
2
)
<<
"Recurrent Layer Group eval frame "
<<
i
<<
" end"
;
}
}
}
}
...
@@ -1097,10 +1085,6 @@ void RecurrentGradientMachine::oneWaySearch(size_t batchSize) {
...
@@ -1097,10 +1085,6 @@ void RecurrentGradientMachine::oneWaySearch(size_t batchSize) {
copyDataOutlinkFrame
(
machineCur
);
copyDataOutlinkFrame
(
machineCur
);
// call value printer
if
(
evaluator_
)
{
evaluator_
->
eval
(
*
(
frames_
[
machineCur
].
get
()));
}
// check eos
// check eos
const
IVectorPtr
&
eosVec
=
const
IVectorPtr
&
eosVec
=
eosFrameLine_
->
layers
[
machineCur
]
->
getOutput
().
ids
;
eosFrameLine_
->
layers
[
machineCur
]
->
getOutput
().
ids
;
...
...
paddle/gserver/gradientmachines/RecurrentGradientMachine.h
浏览文件 @
6b3c33d0
...
@@ -429,8 +429,6 @@ protected:
...
@@ -429,8 +429,6 @@ protected:
std
::
vector
<
int
>
std
::
vector
<
int
>
parameterIds_
;
// parameters actually used by this Layer Group
parameterIds_
;
// parameters actually used by this Layer Group
std
::
unique_ptr
<
Evaluator
>
evaluator_
;
// frame printers in this layer group
// store final argument of outFrameLines_
// store final argument of outFrameLines_
std
::
vector
<
Argument
>
dataArgs_
;
std
::
vector
<
Argument
>
dataArgs_
;
// store each frame's output argument of outFrameLines_
// store each frame's output argument of outFrameLines_
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录