提交 6a6e1c74 编写于 作者: C Cao Ying 提交者: GitHub

Merge pull request #2944 from lcy-seso/fix_recurrent_parse_bug

fix recurrent_group parsing bug.
......@@ -3173,11 +3173,11 @@ def memory(name,
@wrap_bias_attr_default()
@wrap_act_default(
param_names=['gate_act', 'state_act'], act=SigmoidActivation())
@wrap_act_default(param_names=['gate_act'], act=SigmoidActivation())
@wrap_act_default(param_names=['state_act'], act=TanhActivation())
@wrap_act_default(act=TanhActivation())
@wrap_name_default('lstm_step')
@layer_support()
@layer_support(ERROR_CLIPPING, DROPOUT)
def lstm_step_layer(input,
state,
size=None,
......@@ -3531,12 +3531,7 @@ def SubsequenceInput(input):
@wrap_name_default("recurrent_group")
def recurrent_group(step,
input,
reverse=False,
name=None,
targetInlink=None,
is_generating=False):
def recurrent_group(step, input, reverse=False, name=None, targetInlink=None):
"""
Recurrent layer group is an extremely flexible recurrent unit in
PaddlePaddle. As long as the user defines the calculation done within a
......@@ -3602,21 +3597,12 @@ def recurrent_group(step,
:type targetInlink: LayerOutput|SubsequenceInput
:param is_generating: If is generating, none of input type should be LayerOutput;
else, for training or testing, one of the input type must
be LayerOutput.
:type is_generating: bool
:return: LayerOutput object.
:rtype: LayerOutput
"""
model_type('recurrent_nn')
def is_single_input(x):
return isinstance(x, LayerOutput) or isinstance(x, StaticInput)
if is_single_input(input):
if isinstance(input, LayerOutput) or isinstance(input, StaticInput):
input = [input]
assert isinstance(input, collections.Sequence)
......@@ -3630,13 +3616,8 @@ def recurrent_group(step,
in_links=map(lambda x: x.name, in_links),
seq_reversed=reverse)
in_args = []
has_LayerOutput = False
for each_input in input:
assert is_single_input(each_input)
if isinstance(each_input, LayerOutput):
in_args.append(each_input)
has_LayerOutput = True
else: # StaticInput
if isinstance(each_input, StaticInput): # StaticInput
mem_name = "__%s_memory__" % each_input.input.name
mem = memory(
name=None,
......@@ -3644,24 +3625,26 @@ def recurrent_group(step,
boot_layer=each_input.input)
mem.set_input(mem)
in_args.append(mem)
assert (is_generating != has_LayerOutput)
else:
in_args.append(each_input)
layer_outs = step(*in_args)
if isinstance(layer_outs, LayerOutput):
layer_outs = [layer_outs]
for ot in layer_outs:
assert isinstance(ot, LayerOutput)
ot.reverse = reverse
RecurrentLayerGroupSetOutLink(ot.name)
for layer_out in layer_outs:
assert isinstance(
layer_out, LayerOutput
), "Type of step function's return value must be LayerOutput."
layer_out.reverse = reverse
RecurrentLayerGroupSetOutLink(layer_out.name)
RecurrentLayerGroupEnd(name=name)
for layer_out in layer_outs:
# Thee previous full_name is the name is the rnn group
# We need a full_name outside the rnn group
# The previous full_name is the name inside the recurrent group.
# We need a full_name outside the recurrent group.
layer_out.full_name = MakeLayerNameInSubmodel(layer_out.name)
if len(layer_outs) == 1:
......@@ -3684,7 +3667,20 @@ class BaseGeneratedInput(object):
class GeneratedInput(BaseGeneratedInput):
def after_real_step(self, input):
return maxid_layer(input=input, name='__beam_search_predict__')
if isinstance(input, LayerOutput):
input = [input]
elif isinstance(input, collections.Sequence):
input = list(input)
if len(input) > 1:
logger.info(
("More than one layers inside the recurrent_group "
"are returned as outputs of the entire recurrent_group "
"PLEASE garantee the first output is probability of "
"the predicted next word."))
return [maxid_layer(
input=input[0], name='__beam_search_predict__')] + (
input[1:] if len(input) > 1 else [])
def before_real_step(self):
predict_id = memory(
......@@ -3871,6 +3867,7 @@ def beam_search(step,
:type step: callable
:param input: Input data for the recurrent unit, which should include the
previously generated words as a GeneratedInput object.
In beam_search, none of the input's type should be LayerOutput.
:type input: list
:param bos_id: Index of the start symbol in the dictionary. The start symbol
is a special token for NLP task, which indicates the
......@@ -3912,15 +3909,18 @@ def beam_search(step,
real_input = []
for i, each_input in enumerate(input):
assert isinstance(each_input, StaticInput) or isinstance(
each_input, BaseGeneratedInput)
assert not isinstance(each_input, LayerOutput), (
"in beam_search, "
"none of the input should has a type of LayerOutput.")
if isinstance(each_input, BaseGeneratedInput):
assert generated_input_index == -1
assert generated_input_index == -1, ("recurrent_group accepts "
"only one GeneratedInput.")
generated_input_index = i
else:
real_input.append(each_input)
assert generated_input_index != -1
assert generated_input_index != -1, "No GeneratedInput is given."
gipt = input[generated_input_index]
......@@ -3941,17 +3941,11 @@ def beam_search(step,
predict = gipt.after_real_step(step(*args))
eos_layer(input=predict, eos_id=eos_id, name=eos_name)
eos_layer(input=predict[0], eos_id=eos_id, name=eos_name)
return predict
tmp = recurrent_group(
step=__real_step__,
input=real_input,
reverse=False,
name=name,
is_generating=True)
return tmp
return recurrent_group(
step=__real_step__, input=real_input, reverse=False, name=name)
def __cost_input__(input, label, weight=None):
......
......@@ -614,18 +614,17 @@ def simple_lstm(input,
@wrap_name_default('lstm_unit')
def lstmemory_unit(input,
memory_boot=None,
out_memory=None,
name=None,
size=None,
param_attr=None,
act=None,
gate_act=None,
state_act=None,
mixed_bias_attr=None,
input_proj_bias_attr=None,
input_proj_layer_attr=None,
lstm_bias_attr=None,
mixed_layer_attr=None,
lstm_layer_attr=None,
get_output_layer_attr=None):
lstm_layer_attr=None):
"""
Define calculations that a LSTM unit performs during a single time step.
This function itself is not a recurrent layer, so it can not be
......@@ -662,8 +661,8 @@ def lstmemory_unit(input,
:param input: input layer name.
:type input: LayerOutput
:param memory_boot: the initialization state of the LSTM cell.
:type memory_boot: LayerOutput | None
:param out_memory: output of previous time step
:type out_memory: LayerOutput | None
:param name: lstmemory unit name.
:type name: basestring
:param size: lstmemory unit size.
......@@ -676,33 +675,35 @@ def lstmemory_unit(input,
:type gate_act: BaseActivation
:param state_act: lstm state activiation type.
:type state_act: BaseActivation
:param mixed_bias_attr: bias parameter attribute of mixed layer.
False means no bias, None means default bias.
:type mixed_bias_attr: ParameterAttribute|False
:param input_proj_bias_attr: bias attribute for input-to-hidden projection.
False means no bias, None means default bias.
:type input_proj_bias_attr: ParameterAttribute|False|None
:param input_proj_layer_attr: extra layer attribute for input to hidden
projection of the LSTM unit, such as dropout, error clipping.
:type input_proj_layer_attr: ExtraLayerAttribute
:param lstm_bias_attr: bias parameter attribute of lstm layer.
False means no bias, None means default bias.
False means no bias, None means default bias.
:type lstm_bias_attr: ParameterAttribute|False
:param mixed_layer_attr: mixed layer's extra attribute.
:type mixed_layer_attr: ExtraLayerAttribute
:param lstm_layer_attr: lstm layer's extra attribute.
:type lstm_layer_attr: ExtraLayerAttribute
:param get_output_layer_attr: get output layer's extra attribute.
:type get_output_layer_attr: ExtraLayerAttribute
:return: lstmemory unit name.
:rtype: LayerOutput
"""
if size is None:
assert input.size % 4 == 0
size = input.size / 4
out_mem = memory(name=name, size=size)
state_mem = memory(
name="%s_state" % name, size=size, boot_layer=memory_boot)
if out_memory is None:
out_mem = memory(name=name, size=size)
else:
out_mem = out_memory
state_mem = memory(name="%s_state" % name, size=size)
with mixed_layer(
name="%s_input_recurrent" % name,
size=size * 4,
bias_attr=mixed_bias_attr,
layer_attr=mixed_layer_attr,
bias_attr=input_proj_bias_attr,
layer_attr=input_proj_layer_attr,
act=IdentityActivation()) as m:
m += identity_projection(input=input)
m += full_matrix_projection(input=out_mem, param_attr=param_attr)
......@@ -717,11 +718,7 @@ def lstmemory_unit(input,
gate_act=gate_act,
state_act=state_act,
layer_attr=lstm_layer_attr)
get_output_layer(
name='%s_state' % name,
input=lstm_out,
arg_name='state',
layer_attr=get_output_layer_attr)
get_output_layer(name='%s_state' % name, input=lstm_out, arg_name='state')
return lstm_out
......@@ -730,17 +727,16 @@ def lstmemory_unit(input,
def lstmemory_group(input,
size=None,
name=None,
memory_boot=None,
out_memory=None,
reverse=False,
param_attr=None,
act=None,
gate_act=None,
state_act=None,
mixed_bias_attr=None,
input_proj_bias_attr=None,
input_proj_layer_attr=None,
lstm_bias_attr=None,
mixed_layer_attr=None,
lstm_layer_attr=None,
get_output_layer_attr=None):
lstm_layer_attr=None):
"""
lstm_group is a recurrent_group version of Long Short Term Memory. It
does exactly the same calculation as the lstmemory layer (see lstmemory in
......@@ -774,8 +770,8 @@ def lstmemory_group(input,
:type size: int
:param name: name of the lstmemory group.
:type name: basestring
:param memory_boot: the initialization state of LSTM cell.
:type memory_boot: LayerOutput | None
:param out_memory: output of previous time step
:type out_memory: LayerOutput | None
:param reverse: is lstm reversed
:type reverse: bool
:param param_attr: Parameter config, None if use default.
......@@ -786,18 +782,17 @@ def lstmemory_group(input,
:type gate_act: BaseActivation
:param state_act: lstm state activiation type.
:type state_act: BaseActivation
:param mixed_bias_attr: bias parameter attribute of mixed layer.
False means no bias, None means default bias.
:type mixed_bias_attr: ParameterAttribute|False
:param lstm_bias_attr: bias parameter attribute of lstm layer.
False means no bias, None means default bias.
:type lstm_bias_attr: ParameterAttribute|False
:param mixed_layer_attr: mixed layer's extra attribute.
:type mixed_layer_attr: ExtraLayerAttribute
:param input_proj_bias_attr: bias attribute for input-to-hidden projection.
False means no bias, None means default bias.
:type input_proj_bias_attr: ParameterAttribute|False|None
:param input_proj_layer_attr: extra layer attribute for input to hidden
projection of the LSTM unit, such as dropout, error clipping.
:type input_proj_layer_attr: ExtraLayerAttribute
:param lstm_layer_attr: lstm layer's extra attribute.
:type lstm_layer_attr: ExtraLayerAttribute
:param get_output_layer_attr: get output layer's extra attribute.
:type get_output_layer_attr: ExtraLayerAttribute
:return: the lstmemory group.
:rtype: LayerOutput
"""
......@@ -805,18 +800,17 @@ def lstmemory_group(input,
def __lstm_step__(ipt):
return lstmemory_unit(
input=ipt,
memory_boot=memory_boot,
name=name,
size=size,
mixed_bias_attr=mixed_bias_attr,
mixed_layer_attr=mixed_layer_attr,
param_attr=param_attr,
lstm_bias_attr=lstm_bias_attr,
act=act,
gate_act=gate_act,
state_act=state_act,
out_memory=out_memory,
input_proj_bias_attr=input_proj_bias_attr,
input_proj_layer_attr=input_proj_layer_attr,
param_attr=param_attr,
lstm_layer_attr=lstm_layer_attr,
get_output_layer_attr=get_output_layer_attr)
lstm_bias_attr=lstm_bias_attr)
return recurrent_group(
name='%s_recurrent_group' % name,
......
......@@ -104,7 +104,7 @@ layers {
}
bias_parameter_name: "lstm_bias"
active_gate_type: "sigmoid"
active_state_type: "sigmoid"
active_state_type: "tanh"
}
layers {
name: "__lstm_group_0___state@__lstm_group_0___recurrent_group"
......@@ -183,7 +183,7 @@ layers {
}
bias_parameter_name: "lstm_bias"
active_gate_type: "sigmoid"
active_state_type: "sigmoid"
active_state_type: "tanh"
}
layers {
name: "__lstm_group_1___state@__lstm_group_1___recurrent_group"
......
......@@ -258,7 +258,7 @@ layers {
}
bias_parameter_name: "___lstm_group_0__@__lstm_group_0___recurrent_group.wbias"
active_gate_type: "sigmoid"
active_state_type: "sigmoid"
active_state_type: "tanh"
}
layers {
name: "__lstm_group_0___state@__lstm_group_0___recurrent_group"
......
......@@ -20,12 +20,13 @@ lstm1 = lstmemory_group(
input=m1,
param_attr=lstm_param,
lstm_bias_attr=lstm_bias,
mixed_bias_attr=False)
input_proj_bias_attr=False)
lstm2 = lstmemory_group(
input=m2,
param_attr=lstm_param,
lstm_bias_attr=lstm_bias,
mixed_bias_attr=False)
input_proj_bias_attr=False)
softmax_param = ParamAttr(name='softmax_param')
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册