Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleDetection
提交
69f5c0ee
P
PaddleDetection
项目概览
PaddlePaddle
/
PaddleDetection
大约 1 年 前同步成功
通知
695
Star
11112
Fork
2696
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
184
列表
看板
标记
里程碑
合并请求
40
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
184
Issue
184
列表
看板
标记
里程碑
合并请求
40
合并请求
40
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
69f5c0ee
编写于
2月 16, 2019
作者:
X
Xin Pan
提交者:
GitHub
2月 16, 2019
浏览文件
操作
浏览文件
下载
差异文件
Merge pull request #15557 from panyx0718/imperative
add sugar for fetching parameters and layers
上级
832bd720
792719fb
变更
8
隐藏空白更改
内联
并排
Showing
8 changed file
with
201 addition
and
63 deletion
+201
-63
paddle/fluid/imperative/layer.cc
paddle/fluid/imperative/layer.cc
+1
-1
python/paddle/fluid/imperative/layers.py
python/paddle/fluid/imperative/layers.py
+94
-19
python/paddle/fluid/imperative/nn.py
python/paddle/fluid/imperative/nn.py
+0
-6
python/paddle/fluid/tests/unittests/test_base_layer.py
python/paddle/fluid/tests/unittests/test_base_layer.py
+82
-0
python/paddle/fluid/tests/unittests/test_imperative.py
python/paddle/fluid/tests/unittests/test_imperative.py
+12
-0
python/paddle/fluid/tests/unittests/test_imperative_gan.py
python/paddle/fluid/tests/unittests/test_imperative_gan.py
+0
-7
python/paddle/fluid/tests/unittests/test_imperative_ptb_rnn.py
...n/paddle/fluid/tests/unittests/test_imperative_ptb_rnn.py
+0
-16
python/paddle/fluid/tests/unittests/test_imperative_resnet.py
...on/paddle/fluid/tests/unittests/test_imperative_resnet.py
+12
-14
未找到文件。
paddle/fluid/imperative/layer.cc
浏览文件 @
69f5c0ee
...
@@ -207,7 +207,7 @@ framework::LoDTensor& VarBase::GradValue() {
...
@@ -207,7 +207,7 @@ framework::LoDTensor& VarBase::GradValue() {
std
::
map
<
std
::
string
,
std
::
vector
<
VarBase
*>>
OpBase
::
ApplyGrad
()
{
std
::
map
<
std
::
string
,
std
::
vector
<
VarBase
*>>
OpBase
::
ApplyGrad
()
{
if
(
grad_op_descs_
.
empty
()
&&
backward_id_
<=
0
)
{
if
(
grad_op_descs_
.
empty
()
&&
backward_id_
<=
0
)
{
LOG
(
WARNING
)
<<
"op with no grad: "
<<
op_desc_
->
Type
();
VLOG
(
3
)
<<
"op with no grad: "
<<
op_desc_
->
Type
();
return
{};
return
{};
}
}
...
...
python/paddle/fluid/imperative/layers.py
浏览文件 @
69f5c0ee
...
@@ -12,6 +12,7 @@
...
@@ -12,6 +12,7 @@
# See the License for the specific language governing permissions and
# See the License for the specific language governing permissions and
# limitations under the License.
# limitations under the License.
import
collections
import
contextlib
import
contextlib
import
sys
import
sys
import
numpy
as
np
import
numpy
as
np
...
@@ -30,31 +31,45 @@ class Layer(core.Layer):
...
@@ -30,31 +31,45 @@ class Layer(core.Layer):
def
__init__
(
self
,
dtype
=
core
.
VarDesc
.
VarType
.
FP32
,
name
=
None
):
def
__init__
(
self
,
dtype
=
core
.
VarDesc
.
VarType
.
FP32
,
name
=
None
):
self
.
_built
=
False
self
.
_built
=
False
self
.
_dtype
=
dtype
self
.
_dtype
=
dtype
self
.
_parameters
=
collections
.
OrderedDict
()
self
.
_sub_layers
=
collections
.
OrderedDict
()
def
parameters
(
self
,
include_sublayers
=
True
):
"""Returns a list of Parameters from current and sub-layers.
Args:
include_sublayers: If true, also include the parameters from
sublayers.
Returns a list of Parameters.
"""
ret
=
[
p
for
p
in
self
.
_parameters
.
values
()]
if
include_sublayers
:
for
l
in
self
.
_sub_layers
.
values
():
for
p
in
l
.
parameters
(
include_sublayers
):
ret
.
append
(
p
)
return
ret
def
sublayers
(
self
,
include_sublayers
=
True
):
"""Returns a list of sub layers.
def
parameters
(
self
):
Args:
params
=
[]
include_sublayers: If true, also include the layers from sublayers.
for
key
in
self
.
__dict__
.
keys
():
value
=
self
.
__dict__
[
key
]
Returns a list of sub layers.
if
isinstance
(
value
,
framework
.
Parameter
):
"""
params
.
append
(
value
)
ret
=
[
l
for
l
in
self
.
_sub_layers
.
values
()]
elif
isinstance
(
value
,
core
.
Layer
):
if
include_sublayers
:
params
.
extend
(
value
.
parameters
())
for
l
in
self
.
_sub_layers
.
values
():
elif
isinstance
(
value
,
collections
.
Container
):
for
sub_l
in
l
.
sublayers
(
include_sublayers
):
if
len
(
value
)
==
0
:
ret
.
append
(
sub_l
)
continue
return
ret
if
isinstance
(
value
[
0
],
framework
.
Parameter
):
params
.
extend
(
value
)
elif
isinstance
(
value
[
0
],
core
.
Layer
):
for
v
in
value
:
params
.
extend
(
v
.
parameters
())
return
params
def
clear_gradients
(
self
):
def
clear_gradients
(
self
):
for
p
in
self
.
parameters
():
for
p
in
self
.
parameters
():
p
.
_clear_gradient
()
p
.
_clear_gradient
()
def
_build_once
(
self
,
input
s
):
def
_build_once
(
self
,
*
arg
s
):
pass
pass
def
__call__
(
self
,
*
inputs
):
def
__call__
(
self
,
*
inputs
):
...
@@ -71,6 +86,66 @@ class Layer(core.Layer):
...
@@ -71,6 +86,66 @@ class Layer(core.Layer):
def
backward
(
self
,
*
inputs
):
def
backward
(
self
,
*
inputs
):
raise
ValueError
(
"Layer shouldn't implement backward"
)
raise
ValueError
(
"Layer shouldn't implement backward"
)
def
add_sublayer
(
self
,
name
,
sublayer
):
"""Adds a sub Layer instance.
Added sublayer can be access like self.name.
Args:
name: name of this sublayer.
sublayer: an instance of Layer.
Returns:
the sublayer passed in.
"""
assert
isinstance
(
sublayer
,
core
.
Layer
)
self
.
_sub_layers
[
name
]
=
sublayer
return
sublayer
def
add_parameter
(
self
,
name
,
parameter
):
"""Adds a Parameter instance.
Added parameter can be access like self.name.
Args:
name: name of this sublayer.
parameter: an instance of Parameter.
Returns:
the parameter passed in.
"""
assert
isinstance
(
parameter
,
framework
.
Parameter
)
self
.
_parameters
[
name
]
=
parameter
return
parameter
def
__getattr__
(
self
,
name
):
if
name
in
self
.
_parameters
:
return
self
.
_parameters
[
name
]
elif
name
in
self
.
_sub_layers
:
return
self
.
_sub_layers
[
name
]
def
__setattr__
(
self
,
name
,
value
):
if
isinstance
(
value
,
framework
.
Parameter
):
params
=
self
.
__dict__
.
get
(
'_parameters'
,
None
)
if
params
is
None
:
raise
ValueError
(
"super(YourLayer, self).__init__() should be called first"
)
params
[
name
]
=
value
elif
isinstance
(
value
,
core
.
Layer
):
layers
=
self
.
__dict__
.
get
(
'_sub_layers'
,
None
)
if
layers
is
None
:
raise
ValueError
(
"super(YourLayer, self).__init__() should be called first"
)
layers
[
name
]
=
value
else
:
object
.
__setattr__
(
self
,
name
,
value
)
def
__delattr__
(
self
,
name
):
if
name
in
self
.
_parameters
:
del
self
.
_parameters
[
name
]
elif
name
in
self
.
_sub_layers
:
del
self
.
_sub_layers
[
name
]
else
:
object
.
__delattr__
(
self
,
name
)
class
PyLayer
(
core
.
PyLayer
):
class
PyLayer
(
core
.
PyLayer
):
"""Layers composed of user-defined python codes."""
"""Layers composed of user-defined python codes."""
...
...
python/paddle/fluid/imperative/nn.py
浏览文件 @
69f5c0ee
...
@@ -225,9 +225,6 @@ class FC(layers.Layer):
...
@@ -225,9 +225,6 @@ class FC(layers.Layer):
act
=
act
,
act
=
act
,
name
=
name
)
name
=
name
)
def
parameters
(
self
):
return
[
self
.
_w
,
self
.
_b
]
def
_build_once
(
self
,
input
):
def
_build_once
(
self
,
input
):
input_shape
=
input
.
shape
input_shape
=
input
.
shape
param_shape
=
[
param_shape
=
[
...
@@ -478,9 +475,6 @@ class Embedding(layers.Layer):
...
@@ -478,9 +475,6 @@ class Embedding(layers.Layer):
dtype
=
self
.
_dtype
,
dtype
=
self
.
_dtype
,
is_bias
=
False
)
is_bias
=
False
)
def
parameters
(
self
):
return
[
self
.
_w
]
def
forward
(
self
,
input
):
def
forward
(
self
,
input
):
out
=
self
.
_helper
.
create_variable_for_type_inference
(
self
.
_dtype
)
out
=
self
.
_helper
.
create_variable_for_type_inference
(
self
.
_dtype
)
self
.
_helper
.
append_op
(
self
.
_helper
.
append_op
(
...
...
python/paddle/fluid/tests/unittests/test_base_layer.py
0 → 100644
浏览文件 @
69f5c0ee
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import
unittest
import
numpy
as
np
import
paddle.fluid
as
fluid
from
paddle.fluid.layer_helper
import
LayerHelper
class
L1
(
fluid
.
imperative
.
Layer
):
def
__init__
(
self
):
super
(
L1
,
self
).
__init__
()
self
.
_helper
=
LayerHelper
(
'MyLayer'
,
param_attr
=
fluid
.
ParamAttr
(
initializer
=
fluid
.
initializer
.
Constant
(
value
=
0.1
)))
self
.
w1
=
self
.
_helper
.
create_parameter
(
attr
=
self
.
_helper
.
param_attr
,
shape
=
[
2
,
2
],
dtype
=
'float32'
,
is_bias
=
False
)
self
.
w2
=
self
.
_helper
.
create_parameter
(
attr
=
self
.
_helper
.
param_attr
,
shape
=
[
2
,
2
],
dtype
=
'float32'
,
is_bias
=
False
)
def
forward
(
self
):
return
self
.
w1
+
self
.
w2
class
L2
(
fluid
.
imperative
.
Layer
):
def
__init__
(
self
):
super
(
L2
,
self
).
__init__
()
self
.
layer1
=
L1
()
self
.
layer2
=
L1
()
def
forward
(
self
):
return
self
.
layer1
()
+
self
.
layer2
()
class
L3
(
fluid
.
imperative
.
Layer
):
def
__init__
(
self
):
super
(
L3
,
self
).
__init__
()
self
.
layer1
=
L2
()
self
.
layer2
=
L2
()
def
forward
(
self
):
return
self
.
layer1
()
+
self
.
layer2
()
class
TestBaseLayer
(
unittest
.
TestCase
):
def
test_one_level
(
self
):
with
fluid
.
imperative
.
guard
():
l
=
L1
()
ret
=
l
()
self
.
assertEqual
(
l
.
w1
.
name
,
"MyLayer_0.w_0"
)
self
.
assertEqual
(
l
.
w2
.
name
,
"MyLayer_0.w_1"
)
self
.
assertTrue
(
np
.
allclose
(
ret
.
_numpy
(),
0.2
*
np
.
ones
([
2
,
2
])))
def
test_three_level
(
self
):
with
fluid
.
imperative
.
guard
():
l
=
L3
()
ret
=
l
()
self
.
assertTrue
(
np
.
allclose
(
ret
.
_numpy
(),
0.8
*
np
.
ones
([
2
,
2
])))
if
__name__
==
'__main__'
:
unittest
.
main
()
python/paddle/fluid/tests/unittests/test_imperative.py
浏览文件 @
69f5c0ee
...
@@ -333,6 +333,18 @@ class TestImperative(unittest.TestCase):
...
@@ -333,6 +333,18 @@ class TestImperative(unittest.TestCase):
self
.
assertTrue
(
np
.
allclose
(
dy_out
,
static_out
))
self
.
assertTrue
(
np
.
allclose
(
dy_out
,
static_out
))
self
.
assertTrue
(
np
.
allclose
(
dy_grad
,
static_grad
))
self
.
assertTrue
(
np
.
allclose
(
dy_grad
,
static_grad
))
params
=
mlp
.
parameters
(
True
)
self
.
assertEqual
(
"FC_0.w_0"
,
params
[
0
].
name
)
self
.
assertEqual
(
"FC_0.b_0"
,
params
[
1
].
name
)
self
.
assertEqual
(
"FC_1.w_0"
,
params
[
2
].
name
)
self
.
assertEqual
(
"FC_1.b_0"
,
params
[
3
].
name
)
self
.
assertEqual
(
len
(
params
),
4
)
sublayers
=
mlp
.
sublayers
(
True
)
self
.
assertEqual
(
mlp
.
_fc1
,
sublayers
[
0
])
self
.
assertEqual
(
mlp
.
_fc2
,
sublayers
[
1
])
self
.
assertEqual
(
len
(
sublayers
),
2
)
def
test_rnn
(
self
):
def
test_rnn
(
self
):
np_inp
=
np
.
array
([[
1.0
,
2.0
,
3.0
],
[
4.0
,
5.0
,
6.0
],
[
7.0
,
8.0
,
9.0
],
np_inp
=
np
.
array
([[
1.0
,
2.0
,
3.0
],
[
4.0
,
5.0
,
6.0
],
[
7.0
,
8.0
,
9.0
],
[
10.0
,
11.0
,
12.0
]])
[
10.0
,
11.0
,
12.0
]])
...
...
python/paddle/fluid/tests/unittests/test_imperative_gan.py
浏览文件 @
69f5c0ee
...
@@ -33,9 +33,6 @@ class Discriminator(fluid.imperative.Layer):
...
@@ -33,9 +33,6 @@ class Discriminator(fluid.imperative.Layer):
self
.
_fc1
=
FC
(
size
=
32
,
act
=
'elu'
,
name
=
"d_fc1"
)
self
.
_fc1
=
FC
(
size
=
32
,
act
=
'elu'
,
name
=
"d_fc1"
)
self
.
_fc2
=
FC
(
size
=
1
,
name
=
"d_fc2"
)
self
.
_fc2
=
FC
(
size
=
1
,
name
=
"d_fc2"
)
def
parameters
(
self
):
return
self
.
_fc1
.
parameters
()
+
self
.
_fc2
.
parameters
()
def
forward
(
self
,
inputs
):
def
forward
(
self
,
inputs
):
x
=
self
.
_fc1
(
inputs
)
x
=
self
.
_fc1
(
inputs
)
return
self
.
_fc2
(
x
)
return
self
.
_fc2
(
x
)
...
@@ -48,10 +45,6 @@ class Generator(fluid.imperative.Layer):
...
@@ -48,10 +45,6 @@ class Generator(fluid.imperative.Layer):
self
.
_fc2
=
FC
(
size
=
64
,
act
=
'elu'
,
name
=
"g_fc2"
)
self
.
_fc2
=
FC
(
size
=
64
,
act
=
'elu'
,
name
=
"g_fc2"
)
self
.
_fc3
=
FC
(
size
=
1
,
name
=
"g_fc3"
)
self
.
_fc3
=
FC
(
size
=
1
,
name
=
"g_fc3"
)
def
parameters
(
self
):
return
self
.
_fc1
.
parameters
()
+
self
.
_fc2
.
parameters
(
)
+
self
.
_fc3
.
parameters
()
def
forward
(
self
,
inputs
):
def
forward
(
self
,
inputs
):
x
=
self
.
_fc1
(
inputs
)
x
=
self
.
_fc1
(
inputs
)
x
=
self
.
_fc2
(
x
)
x
=
self
.
_fc2
(
x
)
...
...
python/paddle/fluid/tests/unittests/test_imperative_ptb_rnn.py
浏览文件 @
69f5c0ee
...
@@ -75,16 +75,6 @@ class SimpleLSTMRNN(fluid.imperative.Layer):
...
@@ -75,16 +75,6 @@ class SimpleLSTMRNN(fluid.imperative.Layer):
self
.
hidden_array
.
append
(
pre_hidden
)
self
.
hidden_array
.
append
(
pre_hidden
)
self
.
cell_array
.
append
(
pre_cell
)
self
.
cell_array
.
append
(
pre_cell
)
def
parameters
(
self
):
parameters
=
list
()
for
param
in
self
.
weight_1_arr
:
parameters
.
append
(
param
)
for
param
in
self
.
weight_2_arr
:
parameters
.
append
(
param
)
for
bias
in
self
.
bias_arr
:
parameters
.
append
(
bias
)
return
parameters
def
forward
(
self
,
input_embedding
,
init_hidden
=
None
,
init_cell
=
None
):
def
forward
(
self
,
input_embedding
,
init_hidden
=
None
,
init_cell
=
None
):
res
=
[]
res
=
[]
for
index
in
range
(
self
.
_num_steps
):
for
index
in
range
(
self
.
_num_steps
):
...
@@ -177,12 +167,6 @@ class PtbModel(fluid.imperative.Layer):
...
@@ -177,12 +167,6 @@ class PtbModel(fluid.imperative.Layer):
def
_build_once
(
self
,
input
,
label
,
init_hidden
,
init_cell
):
def
_build_once
(
self
,
input
,
label
,
init_hidden
,
init_cell
):
pass
pass
def
parameters
(
self
):
parameters
=
self
.
simple_lstm_rnn
.
parameters
()
+
[
self
.
softmax_weight
,
self
.
softmax_bias
]
+
self
.
embedding
.
parameters
()
return
parameters
def
forward
(
self
,
input
,
label
,
init_hidden
,
init_cell
):
def
forward
(
self
,
input
,
label
,
init_hidden
,
init_cell
):
init_h
=
fluid
.
layers
.
reshape
(
init_h
=
fluid
.
layers
.
reshape
(
...
...
python/paddle/fluid/tests/unittests/test_imperative_resnet.py
浏览文件 @
69f5c0ee
...
@@ -21,7 +21,6 @@ import paddle
...
@@ -21,7 +21,6 @@ import paddle
import
paddle.fluid
as
fluid
import
paddle.fluid
as
fluid
from
paddle.fluid
import
core
from
paddle.fluid
import
core
from
paddle.fluid.layer_helper
import
LayerHelper
from
paddle.fluid.layer_helper
import
LayerHelper
from
paddle.fluid.optimizer
import
SGDOptimizer
from
paddle.fluid.imperative.nn
import
Conv2D
,
Pool2D
,
BatchNorm
,
FC
from
paddle.fluid.imperative.nn
import
Conv2D
,
Pool2D
,
BatchNorm
,
FC
from
paddle.fluid.imperative.base
import
to_variable
from
paddle.fluid.imperative.base
import
to_variable
from
test_imperative_base
import
new_program_scope
from
test_imperative_base
import
new_program_scope
...
@@ -173,11 +172,13 @@ class ResNet(fluid.imperative.Layer):
...
@@ -173,11 +172,13 @@ class ResNet(fluid.imperative.Layer):
for
block
in
range
(
len
(
depth
)):
for
block
in
range
(
len
(
depth
)):
shortcut
=
False
shortcut
=
False
for
i
in
range
(
depth
[
block
]):
for
i
in
range
(
depth
[
block
]):
bottleneck_block
=
BottleneckBlock
(
bottleneck_block
=
self
.
add_sublayer
(
num_channels
=
num_channels
,
'bb_%d_%d'
%
(
block
,
i
),
num_filters
=
num_filters
[
block
],
BottleneckBlock
(
stride
=
2
if
i
==
0
and
block
!=
0
else
1
,
num_channels
=
num_channels
,
shortcut
=
shortcut
)
num_filters
=
num_filters
[
block
],
stride
=
2
if
i
==
0
and
block
!=
0
else
1
,
shortcut
=
shortcut
))
num_channels
=
bottleneck_block
.
_num_channels_out
num_channels
=
bottleneck_block
.
_num_channels_out
self
.
bottleneck_block_list
.
append
(
bottleneck_block
)
self
.
bottleneck_block_list
.
append
(
bottleneck_block
)
shortcut
=
True
shortcut
=
True
...
@@ -223,8 +224,7 @@ class TestImperativeResnet(unittest.TestCase):
...
@@ -223,8 +224,7 @@ class TestImperativeResnet(unittest.TestCase):
batch_size
=
batch_size
)
batch_size
=
batch_size
)
dy_param_init_value
=
{}
dy_param_init_value
=
{}
for
param
in
fluid
.
default_main_program
().
global_block
(
for
param
in
resnet
.
parameters
():
).
all_parameters
():
dy_param_init_value
[
param
.
name
]
=
param
.
_numpy
()
dy_param_init_value
[
param
.
name
]
=
param
.
_numpy
()
for
batch_id
,
data
in
enumerate
(
train_reader
()):
for
batch_id
,
data
in
enumerate
(
train_reader
()):
...
@@ -247,16 +247,14 @@ class TestImperativeResnet(unittest.TestCase):
...
@@ -247,16 +247,14 @@ class TestImperativeResnet(unittest.TestCase):
dy_out
=
avg_loss
.
_numpy
()
dy_out
=
avg_loss
.
_numpy
()
if
batch_id
==
0
:
if
batch_id
==
0
:
for
param
in
fluid
.
default_main_program
().
global_block
(
for
param
in
resnet
.
parameters
():
).
all_parameters
():
if
param
.
name
not
in
dy_param_init_value
:
if
param
.
name
not
in
dy_param_init_value
:
dy_param_init_value
[
param
.
name
]
=
param
.
_numpy
()
dy_param_init_value
[
param
.
name
]
=
param
.
_numpy
()
avg_loss
.
_backward
()
avg_loss
.
_backward
()
dy_grad_value
=
{}
dy_grad_value
=
{}
for
param
in
fluid
.
default_main_program
().
global_block
(
for
param
in
resnet
.
parameters
():
).
all_parameters
():
if
not
param
.
stop_gradient
:
if
not
param
.
stop_gradient
:
np_array
=
np
.
array
(
param
.
_ivar
.
_grad_ivar
().
value
()
np_array
=
np
.
array
(
param
.
_ivar
.
_grad_ivar
().
value
()
.
get_tensor
())
.
get_tensor
())
...
@@ -267,8 +265,7 @@ class TestImperativeResnet(unittest.TestCase):
...
@@ -267,8 +265,7 @@ class TestImperativeResnet(unittest.TestCase):
resnet
.
clear_gradients
()
resnet
.
clear_gradients
()
dy_param_value
=
{}
dy_param_value
=
{}
for
param
in
fluid
.
default_main_program
().
global_block
(
for
param
in
resnet
.
parameters
():
).
all_parameters
():
dy_param_value
[
param
.
name
]
=
param
.
_numpy
()
dy_param_value
[
param
.
name
]
=
param
.
_numpy
()
with
new_program_scope
():
with
new_program_scope
():
...
@@ -349,6 +346,7 @@ class TestImperativeResnet(unittest.TestCase):
...
@@ -349,6 +346,7 @@ class TestImperativeResnet(unittest.TestCase):
self
.
assertTrue
(
np
.
allclose
(
static_out
,
dy_out
))
self
.
assertTrue
(
np
.
allclose
(
static_out
,
dy_out
))
self
.
assertEqual
(
len
(
dy_param_init_value
),
len
(
static_param_init_value
))
self
.
assertEqual
(
len
(
dy_param_init_value
),
len
(
static_param_init_value
))
for
key
,
value
in
six
.
iteritems
(
static_param_init_value
):
for
key
,
value
in
six
.
iteritems
(
static_param_init_value
):
self
.
assertTrue
(
np
.
allclose
(
value
,
dy_param_init_value
[
key
]))
self
.
assertTrue
(
np
.
allclose
(
value
,
dy_param_init_value
[
key
]))
self
.
assertTrue
(
np
.
isfinite
(
value
.
all
()))
self
.
assertTrue
(
np
.
isfinite
(
value
.
all
()))
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录