Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleDetection
提交
691b5cac
P
PaddleDetection
项目概览
PaddlePaddle
/
PaddleDetection
大约 1 年 前同步成功
通知
695
Star
11112
Fork
2696
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
184
列表
看板
标记
里程碑
合并请求
40
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
184
Issue
184
列表
看板
标记
里程碑
合并请求
40
合并请求
40
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
691b5cac
编写于
1月 07, 2018
作者:
S
Siddharth Goyal
提交者:
Yi Wang
1月 07, 2018
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Fix equation for gru op (#7274)
上级
758fe473
变更
1
隐藏空白更改
内联
并排
Showing
1 changed file
with
8 addition
and
5 deletion
+8
-5
python/paddle/v2/fluid/layers/nn.py
python/paddle/v2/fluid/layers/nn.py
+8
-5
未找到文件。
python/paddle/v2/fluid/layers/nn.py
浏览文件 @
691b5cac
...
@@ -243,18 +243,21 @@ def gru_unit(input,
...
@@ -243,18 +243,21 @@ def gru_unit(input,
r_t & = actGate(xr_{t} + W_r h_{t-1} + b_r)
r_t & = actGate(xr_{t} + W_r h_{t-1} + b_r)
ch_t & = actNode(xc_t + W_c dot(r_t, h_{t-1}) + b_c
)
m_t & = actNode(xm_t + W_c dot(r_t, h_{t-1}) + b_m
)
h_t & = dot((1-u_t),
ch_{t-1}) + dot(u_t, h_t
)
h_t & = dot((1-u_t),
m_t) + dot(u_t, h_{t-1}
)
The inputs of gru unit includes :math:`z_t`, :math:`h_{t-1}`. In terms
The inputs of gru unit includes :math:`z_t`, :math:`h_{t-1}`. In terms
of the equation above, the :math:`z_t` is split into 3 parts -
of the equation above, the :math:`z_t` is split into 3 parts -
:math:`xu_t`, :math:`xr_t` and :math:`x
c
_t`. This means that in order to
:math:`xu_t`, :math:`xr_t` and :math:`x
m
_t`. This means that in order to
implement a full GRU unit operator for an input, a fully
implement a full GRU unit operator for an input, a fully
connected layer has to be applied, such that :math:`z_t = W_{fc}x_t`.
connected layer has to be applied, such that :math:`z_t = W_{fc}x_t`.
This layer has three outputs :math:`h_t`, :math:`dot(r_t, h_{t - 1})`
The terms :math:`u_t` and :math:`r_t` represent the update and reset gates
and concatenation of :math:`u_t`, :math:`r_t` and :math:`ch_t`.
of the GRU cell. Unlike LSTM, GRU has one lesser gate. However, there is
an intermediate candidate hidden output, which is denoted by :math:`m_t`.
This layer has three outputs :math:`h_t`, :math:`dot(r_t, h_{t-1})`
and concatenation of :math:`u_t`, :math:`r_t` and :math:`m_t`.
Args:
Args:
input (Variable): The fc transformed input value of current step.
input (Variable): The fc transformed input value of current step.
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录