未验证 提交 690a7826 编写于 作者: F Feng Ni 提交者: GitHub

add visdrone ppyoloe configs and doc (#6162)

* add visdrone ppyoloe cfg and doc

* fix doc

* fix configs
上级 e1d26e3b
metric: COCO
num_classes: 10
TrainDataset:
!COCODataSet
image_dir: VisDrone2019-DET-train
anno_path: train.json
dataset_dir: dataset/visdrone
data_fields: ['image', 'gt_bbox', 'gt_class', 'is_crowd']
EvalDataset:
!COCODataSet
image_dir: VisDrone2019-DET-val
anno_path: val.json
# image_dir: test_dev
# anno_path: test_dev.json
dataset_dir: dataset/visdrone
TestDataset:
!ImageFolder
anno_path: val.json
dataset_dir: dataset/visdrone
简体中文 | [English](README.md)
# VisDrone-DET 检测模型
PaddleDetection团队提供了针对VisDrone-DET小目标数航拍场景的基于PP-YOLOE的检测模型,用户可以下载模型进行使用。整理后的COCO格式VisDrone-DET数据集[下载链接](https://bj.bcebos.com/v1/paddledet/data/smalldet/visdrone.zip),检测其中的10类,包括 `pedestrian(1), people(2), bicycle(3), car(4), van(5), truck(6), tricycle(7), awning-tricycle(8), bus(9), motor(10)`,原始数据集[下载链接](https://github.com/VisDrone/VisDrone-Dataset)
| 模型 | COCOAPI mAP<sup>val<br>0.5:0.95 | COCOAPI mAP<sup>val<br>0.5 | COCOAPI mAP<sup>test_dev<br>0.5:0.95 | COCOAPI mAP<sup>test_dev<br>0.5 | MatlabAPI mAP<sup>test_dev<br>0.5:0.95 | MatlabAPI mAP<sup>test_dev<br>0.5 | 下载 | 配置文件 |
|:---------|:------:|:------:| :----: | :------:| :------: | :------:| :----: | :------:|
|PP-YOLOE-s| 23.5 | 39.9 | 19.4 | 33.6 | 23.68 | 40.66 | [下载链接](https://paddledet.bj.bcebos.com/models/ppyoloe_crn_s_80e_visdrone.pdparams) | [配置文件](./ppyoloe_crn_s_80e_visdrone.yml) |
|PP-YOLOE-l| 29.8 | 48.3 | 23.0 | 38.6 | 27.29 | 45.52 | [下载链接](https://paddledet.bj.bcebos.com/models/ppyoloe_crn_l_80e_visdrone.pdparams) | [配置文件](./ppyoloe_crn_l_80e_visdrone.yml) |
**注意:**
- PP-YOLOE模型训练过程中使用8 GPUs进行混合精度训练,如果**GPU卡数**或者**batch size**发生了改变,你需要按照公式 **lr<sub>new</sub> = lr<sub>default</sub> * (batch_size<sub>new</sub> * GPU_number<sub>new</sub>) / (batch_size<sub>default</sub> * GPU_number<sub>default</sub>)** 调整学习率。
- 具体使用教程请参考[ppyoloe](../configs/ppyoloe#getting-start)
## 引用
```
@ARTICLE{9573394,
author={Zhu, Pengfei and Wen, Longyin and Du, Dawei and Bian, Xiao and Fan, Heng and Hu, Qinghua and Ling, Haibin},
journal={IEEE Transactions on Pattern Analysis and Machine Intelligence},
title={Detection and Tracking Meet Drones Challenge},
year={2021},
volume={},
number={},
pages={1-1},
doi={10.1109/TPAMI.2021.3119563}
}
```
_BASE_: [
'../datasets/visdrone_detection.yml',
'../runtime.yml',
'../ppyoloe/_base_/optimizer_300e.yml',
'../ppyoloe/_base_/ppyoloe_crn.yml',
'../ppyoloe/_base_/ppyoloe_reader.yml',
]
log_iter: 100
snapshot_epoch: 10
weights: output/ppyoloe_crn_l_80e_visdrone/model_final
pretrain_weights: https://paddledet.bj.bcebos.com/models/ppyoloe_crn_l_300e_coco.pdparams
depth_mult: 1.0
width_mult: 1.0
TrainReader:
batch_size: 8
epoch: 80
LearningRate:
base_lr: 0.001
schedulers:
- !CosineDecay
max_epochs: 96
- !LinearWarmup
start_factor: 0.
epochs: 1
PPYOLOEHead:
static_assigner_epoch: -1
nms:
name: MultiClassNMS
nms_top_k: 10000
keep_top_k: 500
score_threshold: 0.01
nms_threshold: 0.6
_BASE_: [
'../datasets/visdrone_detection.yml',
'../runtime.yml',
'../ppyoloe/_base_/optimizer_300e.yml',
'../ppyoloe/_base_/ppyoloe_crn.yml',
'../ppyoloe/_base_/ppyoloe_reader.yml',
]
log_iter: 100
snapshot_epoch: 10
weights: output/ppyoloe_crn_s_80e_visdrone/model_final
pretrain_weights: https://paddledet.bj.bcebos.com/models/ppyoloe_crn_s_300e_coco.pdparams
depth_mult: 0.33
width_mult: 0.50
TrainReader:
batch_size: 8
epoch: 80
LearningRate:
base_lr: 0.001
schedulers:
- !CosineDecay
max_epochs: 96
- !LinearWarmup
start_factor: 0.
epochs: 1
PPYOLOEHead:
static_assigner_epoch: -1
nms:
name: MultiClassNMS
nms_top_k: 10000
keep_top_k: 500
score_threshold: 0.01
nms_threshold: 0.6
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册