Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleDetection
提交
67b8150f
P
PaddleDetection
项目概览
PaddlePaddle
/
PaddleDetection
大约 1 年 前同步成功
通知
695
Star
11112
Fork
2696
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
184
列表
看板
标记
里程碑
合并请求
40
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
184
Issue
184
列表
看板
标记
里程碑
合并请求
40
合并请求
40
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
67b8150f
编写于
2月 21, 2017
作者:
D
dangqingqing
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
data converter test
上级
29c5c878
变更
3
隐藏空白更改
内联
并排
Showing
3 changed file
with
195 addition
and
8 deletion
+195
-8
paddle/data_converter_test.py
paddle/data_converter_test.py
+92
-0
python/paddle/v2/data_converter.py
python/paddle/v2/data_converter.py
+11
-8
python/paddle/v2/data_converter_test.py
python/paddle/v2/data_converter_test.py
+92
-0
未找到文件。
paddle/data_converter_test.py
0 → 100644
浏览文件 @
67b8150f
# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import
unittest
import
py_paddle.swig_paddle
as
api
import
numpy
as
np
import
paddle.trainer.PyDataProvider2
as
dp2
from
paddle.v2.data_converter
import
DataConverter
class
DataConverterTest
(
unittest
.
TestCase
):
def
dense_reader
(
self
,
shape
):
data
=
np
.
random
.
random
(
shape
)
return
data
def
sparse_binary_reader
(
self
,
high
,
size_limit
,
batch_size
,
non_empty
=
False
):
data
=
[]
for
i
in
xrange
(
batch_size
):
num
=
np
.
random
.
randint
(
size_limit
)
# num could be 0
while
non_empty
and
num
==
0
:
num
=
np
.
random
.
randint
(
size_limit
)
data
.
append
(
np
.
random
.
randint
(
high
,
size
=
num
).
tolist
())
return
data
def
test_dense_vector
(
self
):
def
compare
(
input
):
converter
=
DataConverter
([(
'image'
,
dp2
.
dense_vector
(
784
))])
arg
=
converter
([
input
],
{
'image'
:
0
})
output
=
arg
.
getSlotValue
(
0
).
copyToNumpyMat
()
input
=
np
.
array
(
input
,
dtype
=
'float32'
)
self
.
assertAlmostEqual
(
input
.
all
(),
output
.
all
())
# test numpy array
data
=
self
.
dense_reader
(
shape
=
[
32
,
784
])
compare
(
data
)
# test list
compare
(
data
.
tolist
())
#def test_sparse_binary(self):
# dim = 100000
# data = self.sparse_binary_reader(dim, 5, 2)
# converter = DataConverter([('input', dp2.sparse_binary_vector(dim))])
# arg = converter([data], {'input':0})
# output = arg.getSlotValue(0)
#def test_sparse(self):
# dim = 100000
# v = self.sparse_binary_reader(dim, 5, 2)
# w = []
# for dat in data:
# x = self.dense_reader(shape=[1, len(dat)])
# w.append(x.tolist())
# data = []
# for each in zip(v, w):
# data.append(zip(each[0], each[1]))
#
# converter = DataConverter([('input', dp2.sparse_binary_vector(dim))])
# arg = converter([data], {'input':0})
# output = arg.getSlotValue(0)
def
test_integer
(
self
):
dim
=
100
index
=
np
.
random
.
randint
(
dim
,
size
=
32
)
print
index
converter
=
DataConverter
([(
'input'
,
dp2
.
integer_value
(
dim
))])
arg
=
converter
([
index
],
{
'input'
:
0
})
print
arg
.
getSlotValue
(
0
)
output
=
arg
.
getSlotValue
(
0
).
copyToNumpyArray
()
print
'output='
,
output
if
__name__
==
'__main__'
:
unittest
.
main
()
python/paddle/v2/data_converter.py
浏览文件 @
67b8150f
...
...
@@ -53,9 +53,9 @@ class DenseConvert(IDataConverter):
:type argument: Paddle's Arguments
"""
assert
isinstance
(
argument
,
api
.
Arguments
)
if
data
.
dtype
!=
np
.
float32
:
data
=
data
.
astype
(
np
.
float32
)
m
=
api
.
Matrix
.
createDenseFromNumpy
(
data
,
True
,
False
)
# TODO: handle data type (float, double, ...)
data
=
np
.
array
(
data
,
np
.
float32
)
m
=
api
.
Matrix
.
createDenseFromNumpy
(
data
)
argument
.
setSlotValue
(
self
.
pos
,
m
)
...
...
@@ -72,12 +72,12 @@ class SparseBinaryConvert(IDataConverter):
self
.
__height__
=
len
(
data
)
for
x
in
data
:
self
.
__rows__
.
append
(
self
.
__rows__
[
-
1
]
+
len
(
x
))
self
.
__cols__
=
data
.
flatten
(
)
self
.
__cols__
.
extend
(
x
)
def
convert
(
self
,
data
,
argument
):
assert
isinstance
(
argument
,
api
.
Arguments
)
fill_csr
(
data
)
self
.
fill_csr
(
data
)
m
=
api
.
Matrix
.
createSparse
(
self
.
__height__
,
self
.
input_type
.
dim
,
len
(
self
.
__cols__
),
len
(
self
.
__value__
)
==
0
)
...
...
@@ -94,8 +94,8 @@ class SparseFloatConvert(SparseBinaryConvert):
self
.
__height__
=
len
(
data
)
for
x
in
data
:
self
.
__rows__
.
append
(
self
.
__rows__
[
-
1
]
+
len
(
x
))
self
.
__cols__
.
extend
((
x
[
0
]
for
x
in
data
)
)
self
.
__value__
.
extend
((
x
[
1
]
for
x
in
data
)
)
self
.
__cols__
.
extend
(
x
[
0
]
)
self
.
__value__
.
extend
(
x
[
1
]
)
class
IndexConvert
(
IDataConverter
):
...
...
@@ -105,7 +105,10 @@ class IndexConvert(IDataConverter):
def
convert
(
self
,
data
,
argument
):
assert
isinstance
(
argument
,
api
.
Arguments
)
self
.
__ids__
=
data
.
flatten
()
#for x in data:
# self.__ids__.append(x)
self
.
__ids__
.
extend
(
x
)
ids
=
api
.
IVector
.
create
(
self
.
__ids__
)
argument
.
setSlotIds
(
self
.
pos
,
ids
)
...
...
python/paddle/v2/data_converter_test.py
0 → 100644
浏览文件 @
67b8150f
# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import
unittest
import
py_paddle.swig_paddle
as
api
import
numpy
as
np
import
paddle.trainer.PyDataProvider2
as
dp2
from
paddle.v2.data_converter
import
DataConverter
class
DataConverterTest
(
unittest
.
TestCase
):
def
dense_reader
(
self
,
shape
):
data
=
np
.
random
.
random
(
shape
)
return
data
def
sparse_binary_reader
(
self
,
high
,
size_limit
,
batch_size
,
non_empty
=
False
):
data
=
[]
for
i
in
xrange
(
batch_size
):
num
=
np
.
random
.
randint
(
size_limit
)
# num could be 0
while
non_empty
and
num
==
0
:
num
=
np
.
random
.
randint
(
size_limit
)
data
.
append
(
np
.
random
.
randint
(
high
,
size
=
num
).
tolist
())
return
data
def
test_dense_vector
(
self
):
def
compare
(
input
):
converter
=
DataConverter
([(
'image'
,
dp2
.
dense_vector
(
784
))])
arg
=
converter
([
input
],
{
'image'
:
0
})
output
=
arg
.
getSlotValue
(
0
).
copyToNumpyMat
()
input
=
np
.
array
(
input
,
dtype
=
'float32'
)
self
.
assertAlmostEqual
(
input
.
all
(),
output
.
all
())
# test numpy array
data
=
self
.
dense_reader
(
shape
=
[
32
,
784
])
compare
(
data
)
# test list
compare
(
data
.
tolist
())
#def test_sparse_binary(self):
# dim = 100000
# data = self.sparse_binary_reader(dim, 5, 2)
# converter = DataConverter([('input', dp2.sparse_binary_vector(dim))])
# arg = converter([data], {'input':0})
# output = arg.getSlotValue(0)
#def test_sparse(self):
# dim = 100000
# v = self.sparse_binary_reader(dim, 5, 2)
# w = []
# for dat in data:
# x = self.dense_reader(shape=[1, len(dat)])
# w.append(x.tolist())
# data = []
# for each in zip(v, w):
# data.append(zip(each[0], each[1]))
#
# converter = DataConverter([('input', dp2.sparse_binary_vector(dim))])
# arg = converter([data], {'input':0})
# output = arg.getSlotValue(0)
def
test_integer
(
self
):
dim
=
100
index
=
np
.
random
.
randint
(
dim
,
size
=
32
)
print
index
converter
=
DataConverter
([(
'input'
,
dp2
.
integer_value
(
dim
))])
arg
=
converter
([
index
],
{
'input'
:
0
})
print
arg
.
getSlotValue
(
0
)
output
=
arg
.
getSlotValue
(
0
).
copyToNumpyArray
()
print
'output='
,
output
if
__name__
==
'__main__'
:
unittest
.
main
()
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录