未验证 提交 6663bce8 编写于 作者: L lxastro 提交者: GitHub

add iou aware module (#432)

* add iou aware module
* iouaware model zoo
* fix copyright
上级 c5540b4e
architecture: YOLOv3
use_gpu: true
max_iters: 85000
log_smooth_window: 1
save_dir: output
snapshot_iter: 10000
metric: COCO
pretrain_weights: https://paddlemodels.bj.bcebos.com/object_detection/ResNet50_vd_dcn_db_obj365_pretrained.tar
weights: output/yolov3_r50vd_dcn_db_iouaware_obj365_pretrained_coco/model_final
num_classes: 80
use_fine_grained_loss: true
YOLOv3:
backbone: ResNet
yolo_head: YOLOv3Head
use_fine_grained_loss: true
ResNet:
norm_type: sync_bn
freeze_at: 0
freeze_norm: false
norm_decay: 0.
depth: 50
feature_maps: [3, 4, 5]
variant: d
dcn_v2_stages: [5]
YOLOv3Head:
anchor_masks: [[6, 7, 8], [3, 4, 5], [0, 1, 2]]
anchors: [[10, 13], [16, 30], [33, 23],
[30, 61], [62, 45], [59, 119],
[116, 90], [156, 198], [373, 326]]
norm_decay: 0.
iou_aware: true
iou_aware_factor: 0.4
yolo_loss: YOLOv3Loss
nms:
background_label: -1
keep_top_k: 100
nms_threshold: 0.45
nms_top_k: 1000
normalized: false
score_threshold: 0.01
drop_block: true
YOLOv3Loss:
batch_size: 8
ignore_thresh: 0.7
label_smooth: false
use_fine_grained_loss: true
iou_loss: IouLoss
iou_aware_loss: IouAwareLoss
IouLoss:
loss_weight: 2.5
max_height: 608
max_width: 608
IouAwareLoss:
loss_weight: 1.0
max_height: 608
max_width: 608
LearningRate:
base_lr: 0.001
schedulers:
- !PiecewiseDecay
gamma: 0.1
milestones:
- 55000
- 75000
- !LinearWarmup
start_factor: 0.
steps: 4000
OptimizerBuilder:
optimizer:
momentum: 0.9
type: Momentum
regularizer:
factor: 0.0005
type: L2
_READER_: 'yolov3_enhance_reader.yml'
...@@ -164,7 +164,7 @@ improved performance mainly by using L1 loss in bounding box width and height re ...@@ -164,7 +164,7 @@ improved performance mainly by using L1 loss in bounding box width and height re
randomly color distortion, randomly cropping, randomly expansion, randomly interpolation method, randomly flippling. YOLO v3 used randomly randomly color distortion, randomly cropping, randomly expansion, randomly interpolation method, randomly flippling. YOLO v3 used randomly
reshaped minibatch in training, inferences can be performed on different image sizes with the same model weights, and we provided evaluation reshaped minibatch in training, inferences can be performed on different image sizes with the same model weights, and we provided evaluation
results of image size 608/416/320 above. Deformable conv is added on stage 5 of backbone. results of image size 608/416/320 above. Deformable conv is added on stage 5 of backbone.
- YOLO v3 enhanced model improves the precision to 43.2 involved with deformable conv, dropblock and IoU loss. See more details in [YOLOv3_ENHANCEMENT](./featured_model/YOLOv3_ENHANCEMENT.md) - YOLO v3 enhanced model improves the precision to 43.6 involved with deformable conv, dropblock, IoU loss and IoU aware. See more details in [YOLOv3_ENHANCEMENT](./featured_model/YOLOv3_ENHANCEMENT.md)
### RetinaNet ### RetinaNet
......
...@@ -156,7 +156,7 @@ Paddle提供基于ImageNet的骨架网络预训练模型。所有预训练模型 ...@@ -156,7 +156,7 @@ Paddle提供基于ImageNet的骨架网络预训练模型。所有预训练模型
- 上表中也提供了原论文[YOLOv3](https://arxiv.org/abs/1804.02767)中YOLOv3-DarkNet53的精度,我们的实现版本主要从在bounding box的宽度和高度回归上使用了L1损失,图像mixup和label smooth等方法优化了其精度。 - 上表中也提供了原论文[YOLOv3](https://arxiv.org/abs/1804.02767)中YOLOv3-DarkNet53的精度,我们的实现版本主要从在bounding box的宽度和高度回归上使用了L1损失,图像mixup和label smooth等方法优化了其精度。
- YOLO v3在8卡,总batch size为64下训练270轮。数据增强包括:mixup, 随机颜色失真,随机剪裁,随机扩张,随机插值法,随机翻转。YOLO v3在训练阶段对minibatch采用随机reshape,可以采用相同的模型测试不同尺寸图片,我们分别提供了尺寸为608/416/320大小的测试结果。deformable卷积作用在骨架网络5阶段。 - YOLO v3在8卡,总batch size为64下训练270轮。数据增强包括:mixup, 随机颜色失真,随机剪裁,随机扩张,随机插值法,随机翻转。YOLO v3在训练阶段对minibatch采用随机reshape,可以采用相同的模型测试不同尺寸图片,我们分别提供了尺寸为608/416/320大小的测试结果。deformable卷积作用在骨架网络5阶段。
- YOLO v3增强版模型通过引入可变形卷积,dropblock和IoU loss,将精度进一步提升至43.2, 详情见[YOLOv3增强模型](./featured_model/YOLOv3_ENHANCEMENT.md) - YOLO v3增强版模型通过引入可变形卷积,dropblock,IoU loss和Iou aware,将精度进一步提升至43.6, 详情见[YOLOv3增强模型](./featured_model/YOLOv3_ENHANCEMENT.md)
### RetinaNet ### RetinaNet
......
...@@ -24,7 +24,9 @@ PaddleDetection实现版本中使用了 [Bag of Freebies for Training Object Det ...@@ -24,7 +24,9 @@ PaddleDetection实现版本中使用了 [Bag of Freebies for Training Object Det
4.Yolo v3作为一阶段检测网络,在定位精度上相比Faster RCNN,Cascade RCNN等网络结构有着其天然的劣势,增加[IoU Loss](https://arxiv.org/abs/1908.03851)分支,可以一定程度上提高BBox定位精度,缩小一阶段和两阶段检测网络的差距。 4.Yolo v3作为一阶段检测网络,在定位精度上相比Faster RCNN,Cascade RCNN等网络结构有着其天然的劣势,增加[IoU Loss](https://arxiv.org/abs/1908.03851)分支,可以一定程度上提高BBox定位精度,缩小一阶段和两阶段检测网络的差距。
5.使用[Object365数据集](https://www.objects365.org/download.html)训练得到的模型作为coco数据集上的预训练模型,Object365数据集包含约60万张图片以及365种类别,相比coco数据集进行预训练可以进一步提高YOLOv3的精度。 5.增加[IoU Aware](https://arxiv.org/abs/1912.05992)分支,预测输出BBox和真实BBox的IoU,修正用于NMS的评分,可进一步提高YOLOV3的预测性能。
6.使用[Object365数据集](https://www.objects365.org/download.html)训练得到的模型作为coco数据集上的预训练模型,Object365数据集包含约60万张图片以及365种类别,相比coco数据集进行预训练可以进一步提高YOLOv3的精度。
## 使用方法 ## 使用方法
...@@ -46,3 +48,4 @@ python tools/train.py -c configs/dcn/yolov3_r50vd_dcn_iouloss_obj365_pretrained_ ...@@ -46,3 +48,4 @@ python tools/train.py -c configs/dcn/yolov3_r50vd_dcn_iouloss_obj365_pretrained_
| YOLOv3 ResNet50_vd DCN | [Object365 pretrain](https://paddlemodels.bj.bcebos.com/object_detection/ResNet50_vd_dcn_db_obj365_pretrained.tar) | 42.5 | 原生:74.4ms<br>tensorRT-FP32: 35.2ms | [下载链接](https://paddlemodels.bj.bcebos.com/object_detection/yolov3_r50vd_dcn_obj365_v2.tar) | | YOLOv3 ResNet50_vd DCN | [Object365 pretrain](https://paddlemodels.bj.bcebos.com/object_detection/ResNet50_vd_dcn_db_obj365_pretrained.tar) | 42.5 | 原生:74.4ms<br>tensorRT-FP32: 35.2ms | [下载链接](https://paddlemodels.bj.bcebos.com/object_detection/yolov3_r50vd_dcn_obj365_v2.tar) |
| YOLOv3 ResNet50_vd DCN DropBlock | [Object365 pretrain](https://paddlemodels.bj.bcebos.com/object_detection/ResNet50_vd_dcn_db_obj365_pretrained.tar) | 42.8 | 原生:74.4ms<br/>tensorRT-FP32: 35.2ms | [下载链接](https://paddlemodels.bj.bcebos.com/object_detection/yolov3_r50vd_dcn_obj365_dropblock.tar) | | YOLOv3 ResNet50_vd DCN DropBlock | [Object365 pretrain](https://paddlemodels.bj.bcebos.com/object_detection/ResNet50_vd_dcn_db_obj365_pretrained.tar) | 42.8 | 原生:74.4ms<br/>tensorRT-FP32: 35.2ms | [下载链接](https://paddlemodels.bj.bcebos.com/object_detection/yolov3_r50vd_dcn_obj365_dropblock.tar) |
| YOLOv3 ResNet50_vd DCN DropBlock IoULoss | [Object365 pretrain](https://paddlemodels.bj.bcebos.com/object_detection/ResNet50_vd_dcn_db_obj365_pretrained.tar) | 43.2 | 原生:74.4ms<br/>tensorRT-FP32: 35.2ms | [下载链接](https://paddlemodels.bj.bcebos.com/object_detection/yolov3_r50vd_dcn_obj365_dropblock_iouloss.tar) | | YOLOv3 ResNet50_vd DCN DropBlock IoULoss | [Object365 pretrain](https://paddlemodels.bj.bcebos.com/object_detection/ResNet50_vd_dcn_db_obj365_pretrained.tar) | 43.2 | 原生:74.4ms<br/>tensorRT-FP32: 35.2ms | [下载链接](https://paddlemodels.bj.bcebos.com/object_detection/yolov3_r50vd_dcn_obj365_dropblock_iouloss.tar) |
| YOLOv3 ResNet50_vd DCN DropBlock IoU-Aware | [Object365 pretrain](https://paddlemodels.bj.bcebos.com/object_detection/ResNet50_vd_dcn_db_obj365_pretrained.tar) | 43.6 | 原生:74.4ms<br/>tensorRT-FP32: 35.2ms | [下载链接](https://paddlemodels.bj.bcebos.com/object_detection/yolov3_r50vd_dcn_db_iouaware_obj365_pretrained_coco.pdparams) |
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from paddle import fluid
def _split_ioup(output, an_num, num_classes):
"""
Split new output feature map to output, predicted iou
along channel dimension
"""
ioup = fluid.layers.slice(output, axes=[1], starts=[0], ends=[an_num])
ioup = fluid.layers.sigmoid(ioup)
oriout = fluid.layers.slice(
output, axes=[1], starts=[an_num], ends=[an_num * (num_classes + 6)])
return (ioup, oriout)
def _de_sigmoid(x, eps=1e-7):
x = fluid.layers.clip(x, eps, 1 / eps)
x = fluid.layers.clip((1 / x - 1.0), eps, 1 / eps)
x = -fluid.layers.log(x)
return x
def _postprocess_output(ioup, output, an_num, num_classes, iou_aware_factor):
"""
post process output objectness score
"""
tensors = []
stride = output.shape[1] // an_num
for m in range(an_num):
tensors.append(
fluid.layers.slice(
output,
axes=[1],
starts=[stride * m + 0],
ends=[stride * m + 4]))
obj = fluid.layers.slice(
output, axes=[1], starts=[stride * m + 4], ends=[stride * m + 5])
obj = fluid.layers.sigmoid(obj)
ip = fluid.layers.slice(ioup, axes=[1], starts=[m], ends=[m + 1])
new_obj = fluid.layers.pow(obj, (
1 - iou_aware_factor)) * fluid.layers.pow(ip, iou_aware_factor)
new_obj = _de_sigmoid(new_obj)
tensors.append(new_obj)
tensors.append(
fluid.layers.slice(
output,
axes=[1],
starts=[stride * m + 5],
ends=[stride * m + 5 + num_classes]))
output = fluid.layers.concat(tensors, axis=1)
return output
def get_iou_aware_score(output, an_num, num_classes, iou_aware_factor):
ioup, output = _split_ioup(output, an_num, num_classes)
output = _postprocess_output(ioup, output, an_num, num_classes,
iou_aware_factor)
return output
...@@ -24,6 +24,7 @@ from ppdet.modeling.ops import MultiClassNMS ...@@ -24,6 +24,7 @@ from ppdet.modeling.ops import MultiClassNMS
from ppdet.modeling.losses.yolo_loss import YOLOv3Loss from ppdet.modeling.losses.yolo_loss import YOLOv3Loss
from ppdet.core.workspace import register from ppdet.core.workspace import register
from ppdet.modeling.ops import DropBlock from ppdet.modeling.ops import DropBlock
from .iou_aware import get_iou_aware_score
__all__ = ['YOLOv3Head'] __all__ = ['YOLOv3Head']
...@@ -50,6 +51,8 @@ class YOLOv3Head(object): ...@@ -50,6 +51,8 @@ class YOLOv3Head(object):
[59, 119], [116, 90], [156, 198], [373, 326]], [59, 119], [116, 90], [156, 198], [373, 326]],
anchor_masks=[[6, 7, 8], [3, 4, 5], [0, 1, 2]], anchor_masks=[[6, 7, 8], [3, 4, 5], [0, 1, 2]],
drop_block=False, drop_block=False,
iou_aware=False,
iou_aware_factor=0.4,
block_size=3, block_size=3,
keep_prob=0.9, keep_prob=0.9,
yolo_loss="YOLOv3Loss", yolo_loss="YOLOv3Loss",
...@@ -68,6 +71,8 @@ class YOLOv3Head(object): ...@@ -68,6 +71,8 @@ class YOLOv3Head(object):
self.nms = nms self.nms = nms
self.prefix_name = weight_prefix_name self.prefix_name = weight_prefix_name
self.drop_block = drop_block self.drop_block = drop_block
self.iou_aware = iou_aware
self.iou_aware_factor = iou_aware_factor
self.block_size = block_size self.block_size = block_size
self.keep_prob = keep_prob self.keep_prob = keep_prob
if isinstance(nms, dict): if isinstance(nms, dict):
...@@ -220,7 +225,10 @@ class YOLOv3Head(object): ...@@ -220,7 +225,10 @@ class YOLOv3Head(object):
name=self.prefix_name + "yolo_block.{}".format(i)) name=self.prefix_name + "yolo_block.{}".format(i))
# out channel number = mask_num * (5 + class_num) # out channel number = mask_num * (5 + class_num)
num_filters = len(self.anchor_masks[i]) * (self.num_classes + 5) if self.iou_aware:
num_filters = len(self.anchor_masks[i]) * (self.num_classes + 6)
else:
num_filters = len(self.anchor_masks[i]) * (self.num_classes + 5)
with fluid.name_scope('yolo_output'): with fluid.name_scope('yolo_output'):
block_out = fluid.layers.conv2d( block_out = fluid.layers.conv2d(
input=tip, input=tip,
...@@ -295,6 +303,11 @@ class YOLOv3Head(object): ...@@ -295,6 +303,11 @@ class YOLOv3Head(object):
scores = [] scores = []
downsample = 32 downsample = 32
for i, output in enumerate(outputs): for i, output in enumerate(outputs):
if self.iou_aware:
output = get_iou_aware_score(output,
len(self.anchor_masks[i]),
self.num_classes,
self.iou_aware_factor)
box, score = fluid.layers.yolo_box( box, score = fluid.layers.yolo_box(
x=output, x=output,
img_size=im_size, img_size=im_size,
......
...@@ -22,7 +22,9 @@ from . import iou_loss ...@@ -22,7 +22,9 @@ from . import iou_loss
from . import balanced_l1_loss from . import balanced_l1_loss
from . import fcos_loss from . import fcos_loss
from . import diou_loss_yolo from . import diou_loss_yolo
from . import iou_aware_loss
from .iou_aware_loss import *
from .yolo_loss import * from .yolo_loss import *
from .smooth_l1_loss import * from .smooth_l1_loss import *
from .giou_loss import * from .giou_loss import *
......
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import numpy as np
from paddle.fluid.param_attr import ParamAttr
from paddle.fluid.initializer import NumpyArrayInitializer
from paddle import fluid
from ppdet.core.workspace import register, serializable
from .iou_loss import IouLoss
__all__ = ['IouAwareLoss']
@register
@serializable
class IouAwareLoss(IouLoss):
"""
iou aware loss, see https://arxiv.org/abs/1912.05992
Args:
loss_weight (float): iou aware loss weight, default is 1.0
max_height (int): max height of input to support random shape input
max_width (int): max width of input to support random shape input
"""
def __init__(self, loss_weight=1.0, max_height=608, max_width=608):
super(IouAwareLoss, self).__init__(
loss_weight=loss_weight, max_height=max_height, max_width=max_width)
def __call__(self,
ioup,
x,
y,
w,
h,
tx,
ty,
tw,
th,
anchors,
downsample_ratio,
batch_size,
eps=1.e-10):
'''
Args:
ioup ([Variables]): the predicted iou
x | y | w | h ([Variables]): the output of yolov3 for encoded x|y|w|h
tx |ty |tw |th ([Variables]): the target of yolov3 for encoded x|y|w|h
anchors ([float]): list of anchors for current output layer
downsample_ratio (float): the downsample ratio for current output layer
batch_size (int): training batch size
eps (float): the decimal to prevent the denominator eqaul zero
'''
iouk = self._iou(x, y, w, h, tx, ty, tw, th, anchors, downsample_ratio,
batch_size, ioup, eps)
iouk.stop_gradient = True
loss_iou_aware = fluid.layers.cross_entropy(ioup, iouk, soft_label=True)
loss_iou_aware = loss_iou_aware * self._loss_weight
return loss_iou_aware
...@@ -54,6 +54,7 @@ class IouLoss(object): ...@@ -54,6 +54,7 @@ class IouLoss(object):
anchors, anchors,
downsample_ratio, downsample_ratio,
batch_size, batch_size,
ioup=None,
eps=1.e-10): eps=1.e-10):
''' '''
Args: Args:
...@@ -64,6 +65,28 @@ class IouLoss(object): ...@@ -64,6 +65,28 @@ class IouLoss(object):
batch_size (int): training batch size batch_size (int): training batch size
eps (float): the decimal to prevent the denominator eqaul zero eps (float): the decimal to prevent the denominator eqaul zero
''' '''
iouk = self._iou(x, y, w, h, tx, ty, tw, th, anchors, downsample_ratio,
batch_size, ioup, eps)
loss_iou = 1. - iouk * iouk
loss_iou = loss_iou * self._loss_weight
return loss_iou
def _iou(self,
x,
y,
w,
h,
tx,
ty,
tw,
th,
anchors,
downsample_ratio,
batch_size,
ioup=None,
eps=1.e-10):
x1, y1, x2, y2 = self._bbox_transform( x1, y1, x2, y2 = self._bbox_transform(
x, y, w, h, anchors, downsample_ratio, batch_size, False) x, y, w, h, anchors, downsample_ratio, batch_size, False)
x1g, y1g, x2g, y2g = self._bbox_transform( x1g, y1g, x2g, y2g = self._bbox_transform(
...@@ -83,10 +106,7 @@ class IouLoss(object): ...@@ -83,10 +106,7 @@ class IouLoss(object):
unionk = (x2 - x1) * (y2 - y1) + (x2g - x1g) * (y2g - y1g unionk = (x2 - x1) * (y2 - y1) + (x2g - x1g) * (y2g - y1g
) - intsctk + eps ) - intsctk + eps
iouk = intsctk / unionk iouk = intsctk / unionk
loss_iou = 1. - iouk * iouk return iouk
loss_iou = loss_iou * self._loss_weight
return loss_iou
def _bbox_transform(self, dcx, dcy, dw, dh, anchors, downsample_ratio, def _bbox_transform(self, dcx, dcy, dw, dh, anchors, downsample_ratio,
batch_size, is_gt): batch_size, is_gt):
......
...@@ -34,7 +34,7 @@ class YOLOv3Loss(object): ...@@ -34,7 +34,7 @@ class YOLOv3Loss(object):
use_fine_grained_loss (bool): whether use fine grained YOLOv3 loss use_fine_grained_loss (bool): whether use fine grained YOLOv3 loss
instead of fluid.layers.yolov3_loss instead of fluid.layers.yolov3_loss
""" """
__inject__ = ['iou_loss'] __inject__ = ['iou_loss', 'iou_aware_loss']
__shared__ = ['use_fine_grained_loss'] __shared__ = ['use_fine_grained_loss']
def __init__(self, def __init__(self,
...@@ -42,12 +42,14 @@ class YOLOv3Loss(object): ...@@ -42,12 +42,14 @@ class YOLOv3Loss(object):
ignore_thresh=0.7, ignore_thresh=0.7,
label_smooth=True, label_smooth=True,
use_fine_grained_loss=False, use_fine_grained_loss=False,
iou_loss=None): iou_loss=None,
iou_aware_loss=None):
self._batch_size = batch_size self._batch_size = batch_size
self._ignore_thresh = ignore_thresh self._ignore_thresh = ignore_thresh
self._label_smooth = label_smooth self._label_smooth = label_smooth
self._use_fine_grained_loss = use_fine_grained_loss self._use_fine_grained_loss = use_fine_grained_loss
self._iou_loss = iou_loss self._iou_loss = iou_loss
self._iou_aware_loss = iou_aware_loss
def __call__(self, outputs, gt_box, gt_label, gt_score, targets, anchors, def __call__(self, outputs, gt_box, gt_label, gt_score, targets, anchors,
anchor_masks, mask_anchors, num_classes, prefix_name): anchor_masks, mask_anchors, num_classes, prefix_name):
...@@ -107,13 +109,15 @@ class YOLOv3Loss(object): ...@@ -107,13 +109,15 @@ class YOLOv3Loss(object):
"YOLOv3 output layer number not equal target number" "YOLOv3 output layer number not equal target number"
downsample = 32 downsample = 32
if self._iou_loss is None: loss_xys, loss_whs, loss_objs, loss_clss = [], [], [], []
loss_xys, loss_whs, loss_objs, loss_clss = [], [], [], [] if self._iou_loss is not None:
else: loss_ious = []
loss_xys, loss_whs, loss_ious, loss_objs, loss_clss = [], [], [], [], [] if self._iou_aware_loss is not None:
loss_iou_awares = []
for i, (output, target, for i, (output, target,
anchors) in enumerate(zip(outputs, targets, mask_anchors)): anchors) in enumerate(zip(outputs, targets, mask_anchors)):
an_num = len(anchors) // 2 an_num = len(anchors) // 2
ioup, output = self._split_ioup(output, an_num, num_classes)
x, y, w, h, obj, cls = self._split_output(output, an_num, x, y, w, h, obj, cls = self._split_output(output, an_num,
num_classes) num_classes)
tx, ty, tw, th, tscale, tobj, tcls = self._split_target(target) tx, ty, tw, th, tscale, tobj, tcls = self._split_target(target)
...@@ -137,6 +141,15 @@ class YOLOv3Loss(object): ...@@ -137,6 +141,15 @@ class YOLOv3Loss(object):
loss_iou = fluid.layers.reduce_sum(loss_iou, dim=[1, 2, 3]) loss_iou = fluid.layers.reduce_sum(loss_iou, dim=[1, 2, 3])
loss_ious.append(fluid.layers.reduce_mean(loss_iou)) loss_ious.append(fluid.layers.reduce_mean(loss_iou))
if self._iou_aware_loss is not None:
loss_iou_aware = self._iou_aware_loss(
ioup, x, y, w, h, tx, ty, tw, th, anchors, downsample,
self._batch_size)
loss_iou_aware = loss_iou_aware * tobj
loss_iou_aware = fluid.layers.reduce_sum(
loss_iou_aware, dim=[1, 2, 3])
loss_iou_awares.append(fluid.layers.reduce_mean(loss_iou_aware))
loss_obj_pos, loss_obj_neg = self._calc_obj_loss( loss_obj_pos, loss_obj_neg = self._calc_obj_loss(
output, obj, tobj, gt_box, self._batch_size, anchors, output, obj, tobj, gt_box, self._batch_size, anchors,
num_classes, downsample, self._ignore_thresh) num_classes, downsample, self._ignore_thresh)
...@@ -160,8 +173,24 @@ class YOLOv3Loss(object): ...@@ -160,8 +173,24 @@ class YOLOv3Loss(object):
} }
if self._iou_loss is not None: if self._iou_loss is not None:
losses_all["loss_iou"] = fluid.layers.sum(loss_ious) losses_all["loss_iou"] = fluid.layers.sum(loss_ious)
if self._iou_aware_loss is not None:
losses_all["loss_iou_aware"] = fluid.layers.sum(loss_iou_awares)
return losses_all return losses_all
def _split_ioup(self, output, an_num, num_classes):
"""
Split output feature map to output, predicted iou
along channel dimension
"""
ioup = fluid.layers.slice(output, axes=[1], starts=[0], ends=[an_num])
ioup = fluid.layers.sigmoid(ioup)
oriout = fluid.layers.slice(
output,
axes=[1],
starts=[an_num],
ends=[an_num * (num_classes + 6)])
return (ioup, oriout)
def _split_output(self, output, an_num, num_classes): def _split_output(self, output, an_num, num_classes):
""" """
Split output feature map to x, y, w, h, objectness, classification Split output feature map to x, y, w, h, objectness, classification
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册