Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleDetection
提交
65d418f0
P
PaddleDetection
项目概览
PaddlePaddle
/
PaddleDetection
大约 1 年 前同步成功
通知
695
Star
11112
Fork
2696
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
184
列表
看板
标记
里程碑
合并请求
40
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
184
Issue
184
列表
看板
标记
里程碑
合并请求
40
合并请求
40
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
65d418f0
编写于
7月 27, 2018
作者:
T
tensor-tang
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
complete im2col with padding==1 and speedup filter width==1
上级
52eb86e3
变更
3
隐藏空白更改
内联
并排
Showing
3 changed file
with
113 addition
and
125 deletion
+113
-125
paddle/fluid/operators/math/im2col.cc
paddle/fluid/operators/math/im2col.cc
+5
-3
paddle/fluid/operators/math/im2col_cfo_cpu.h
paddle/fluid/operators/math/im2col_cfo_cpu.h
+99
-119
paddle/fluid/operators/math/im2col_test.cc
paddle/fluid/operators/math/im2col_test.cc
+9
-3
未找到文件。
paddle/fluid/operators/math/im2col.cc
浏览文件 @
65d418f0
...
...
@@ -40,10 +40,12 @@ class Im2ColFunctor<paddle::operators::math::ColFormat::kCFO,
dilation
[
1
]
==
1
)
{
if
(
padding
[
0
]
==
0
&&
padding
[
1
]
==
0
)
{
im2col_sh1sw1dh1dw1ph0pw0
<
T
>
(
im
,
col
);
}
else
{
im2col_sh1sw1dh1dw1
<
T
>
(
im
,
padding
,
col
);
return
;
}
else
if
(
padding
[
0
]
==
1
&&
padding
[
1
]
==
1
)
{
im2col_sh1sw1dh1dw1ph1pw1
<
T
>
(
im
,
col
);
return
;
}
return
;
// TODO(TJ): complete padding >=2
}
im2col_common
<
T
>
(
im
,
dilation
,
stride
,
padding
,
col
);
}
...
...
paddle/fluid/operators/math/im2col_cfo_cpu.h
浏览文件 @
65d418f0
...
...
@@ -21,7 +21,7 @@ namespace paddle {
namespace
operators
{
namespace
math
{
/*
/*
*
* The most common im2col algorithm.
* Support dilation, stride and padding.
*/
...
...
@@ -61,9 +61,9 @@ inline void im2col_common(const framework::Tensor& im,
}
}
/*
/*
*
* im2col algorithm with strides == 1, dilations == 1, paddings == 0
*
*
/
*/
template
<
typename
T
>
inline
void
im2col_sh1sw1dh1dw1ph0pw0
(
const
framework
::
Tensor
&
im
,
framework
::
Tensor
*
col
)
{
...
...
@@ -96,11 +96,13 @@ inline void im2col_sh1sw1dh1dw1ph0pw0(const framework::Tensor& im,
}
}
// further optimize: padding == 1 need special
/**
* im2col algorithm with strides == 1, dilations == 1, paddings == 1
* and filter_width == 1 have a special implementation
*/
template
<
typename
T
>
inline
void
im2col_sh1sw1dh1dw1
(
const
framework
::
Tensor
&
im
,
const
std
::
vector
<
int
>&
padding
,
framework
::
Tensor
*
col
)
{
inline
void
im2col_sh1sw1dh1dw1ph1pw1
(
const
framework
::
Tensor
&
im
,
framework
::
Tensor
*
col
)
{
int
im_channels
=
im
.
dims
()[
0
];
int
im_height
=
im
.
dims
()[
1
];
int
im_width
=
im
.
dims
()[
2
];
...
...
@@ -108,119 +110,57 @@ inline void im2col_sh1sw1dh1dw1(const framework::Tensor& im,
int
filter_width
=
col
->
dims
()[
2
];
int
output_height
=
col
->
dims
()[
3
];
int
output_width
=
col
->
dims
()[
4
];
constexpr
int
sh
=
1
;
constexpr
int
sw
=
1
;
constexpr
int
plh
=
1
;
constexpr
int
prh
=
1
;
constexpr
int
plw
=
1
;
constexpr
int
prw
=
1
;
const
T
*
im_data
=
im
.
data
<
T
>
();
T
*
col_data
=
col
->
data
<
T
>
();
int
col_matrix_width
=
output_width
*
output_height
;
int
im_size
=
im_height
*
im_width
;
int
plh
=
padding
[
0
];
int
plw
=
padding
[
1
];
int
prh
=
(
output_height
-
1
)
*
sh
+
filter_height
-
im_height
-
plh
;
int
prw
=
(
output_width
-
1
)
*
sw
+
filter_width
-
im_width
-
plw
;
// fill height padding : 0 ~ plh-1, (oh-prh) ~ (oh-1)
// TODO(TJ): refine ph*xxx
assert
(
plh
==
prh
);
// because stride_h == 1
int
col_matrix_width
=
output_width
*
output_height
;
int
col_block_fh
=
filter_width
*
col_matrix_width
;
// fw*oh*ow
int
col_block_ic
=
filter_height
*
col_block_fh
;
// fh*fw*oh*ow
for
(
int
ph
=
0
;
ph
<
plh
;
++
ph
)
{
int
sz
=
output_width
*
(
plh
-
ph
);
size_t
copy_sz
=
sizeof
(
T
)
*
sz
;
T
*
col_start_l
=
col_data
+
ph
*
col_block_fh
;
T
*
col_start_r
=
col_data
+
(
filter_height
-
ph
-
1
)
*
col_block_fh
+
col_matrix_width
-
sz
;
// fill height padding
{
size_t
copy_size
=
sizeof
(
T
)
*
output_width
;
T
*
col_start_l
=
col_data
;
T
*
col_start_r
=
col_data
+
(
filter_height
-
1
)
*
col_block_fh
+
col_matrix_width
-
output_width
;
for
(
int
ic
=
0
;
ic
<
im_channels
;
++
ic
)
{
// TODO(TJ): move * outside
T
*
dst_data_l
=
col_start_l
+
ic
*
col_block_ic
;
T
*
dst_data_r
=
col_start_r
+
ic
*
col_block_ic
;
for
(
int
kw
=
0
;
kw
<
filter_width
;
++
kw
)
{
std
::
memset
(
dst_data_l
,
0
,
copy_s
z
);
std
::
memset
(
dst_data_r
,
0
,
copy_s
z
);
std
::
memset
(
dst_data_l
,
0
,
copy_s
ize
);
std
::
memset
(
dst_data_r
,
0
,
copy_s
ize
);
dst_data_l
=
dst_data_l
+
col_matrix_width
;
dst_data_r
=
dst_data_r
+
col_matrix_width
;
}
}
}
// fill width padding
assert
(
plw
==
prw
);
// because stride_w == 1
if
(
plw
==
1
)
{
auto
pad
=
static_cast
<
T
>
(
0
);
// padding zero
auto
pad
=
static_cast
<
T
>
(
0
);
if
(
filter_width
==
1
)
{
// fill width padding
for
(
int
ic
=
0
;
ic
<
im_channels
;
++
ic
)
{
// TODO(TJ):
use add and resue str
ide
// TODO(TJ):
move * outs
ide
T
*
dst_data_ic
=
col_data
+
ic
*
col_block_ic
;
for
(
int
kh
=
0
;
kh
<
filter_height
;
++
kh
)
{
T
*
dst_data_kh
=
dst_data_ic
+
kh
*
col_block_fh
;
for
(
T
*
dst_data
:
{
dst_data_kh
,
dst_data_kh
+
(
filter_width
-
prw
)
*
col_matrix_width
+
output_width
-
1
})
{
// TODO(TJ): from plh, saving repeated assignment
for
(
int
oh
=
0
;
oh
<
output_height
;
++
oh
)
{
*
dst_data
=
pad
;
dst_data
=
dst_data
+
output_width
;
}
// TODO(TJ): move * outside
T
*
dst_data
=
dst_data_ic
+
kh
*
col_block_fh
;
for
(
int
oh
=
0
;
oh
<
output_height
;
++
oh
)
{
*
dst_data
=
pad
;
dst_data
=
dst_data
+
output_width
-
1
;
*
dst_data
=
pad
;
++
dst_data
;
}
}
}
}
else
{
// padding_size > 1
for
(
int
ic
=
0
;
ic
<
im_channels
;
++
ic
)
{
// TODO(TJ): use add and resue stride
T
*
dst_data_ic
=
col_data
+
ic
*
col_block_ic
;
for
(
int
kh
=
0
;
kh
<
filter_height
;
++
kh
)
{
T
*
dst_data_kh
=
dst_data_ic
+
kh
*
col_block_fh
;
for
(
int
kw
=
0
;
kw
<
plw
;
++
kw
)
{
// TODO(TJ): reuse array outside this for
size_t
sz
=
sizeof
(
T
)
*
(
plw
-
kw
);
T
*
dst_data
=
dst_data_kh
+
kw
*
col_matrix_width
;
// TODO(TJ): from plh, saving repeated assignment
for
(
int
oh
=
0
;
oh
<
output_height
;
++
oh
)
{
std
::
memset
(
dst_data
,
0
,
sz
);
dst_data
=
dst_data
+
output_width
;
}
}
// TODO(TJ): use reverse to save cache
for
(
int
kw
=
0
;
kw
<
prw
;
++
kw
)
{
// TODO(TJ): reuse array outside this for
auto
num
=
(
prw
-
kw
);
size_t
sz
=
sizeof
(
T
)
*
num
;
T
*
dst_data
=
dst_data_kh
+
(
filter_width
-
1
-
kw
)
*
col_matrix_width
+
output_width
-
num
;
// TODO(TJ): from plh, saving repeated assignment
for
(
int
oh
=
0
;
oh
<
output_height
;
++
oh
)
{
std
::
memset
(
dst_data
,
0
,
sz
);
dst_data
=
dst_data
+
output_width
;
}
}
}
}
}
// fill im_data
// padding cover two cases:
// 1. kw > 2*pw: kw = 3, pw = 1
// 0 x x x x ... x x x x 0
// 1 1 1 1 1 1
// ==>
// 0 x ... x x
// x x ... x x
// x x ... x 0
// 2. kw < 2*pw: kw = 3, pw = 2
// 0 0 x x x ... x x x 0 0
// 1 1 1 1 1 1
// ==>
// 0 0 x ... x x x
// 0 x x ... x x 0
// x x x ... x 0 0
// TODO(TJ): use array like: size_t copy_size[kw]={sizeof(T) *
// (output_width-1)}
// length of copy_size is equal kw.
if
(
plw
+
prw
<
filter_width
)
{
// fill core
size_t
copy_size
=
sizeof
(
T
)
*
(
output_width
-
plw
-
prw
);
for
(
int
oh
=
0
;
oh
<
output_height
;
++
oh
)
{
const
T
*
im_data_start
=
im_data
+
(
oh
-
plh
>
0
?
oh
-
plh
:
0
)
*
im_width
;
...
...
@@ -230,33 +170,73 @@ inline void im2col_sh1sw1dh1dw1(const framework::Tensor& im,
for
(
int
kh
=
0
;
kh
<
filter_height
;
++
kh
)
{
if
((
oh
<
plh
&&
kh
<
plh
)
||
(
oh
>
(
output_height
-
prh
-
1
)
&&
kh
>
(
filter_height
-
prh
-
1
)))
{
dst_data
=
dst_data
+
filter_width
*
col_matrix_width
;
continue
;
}
// TODO(TJ): reuse plw-kw outside this for
// try to unify
for
(
int
kw
=
0
;
kw
<
plw
;
++
kw
)
{
std
::
memcpy
(
dst_data
+
(
plw
-
kw
),
src_data
,
sizeof
(
T
)
*
(
output_width
-
(
plw
-
kw
)));
dst_data
=
dst_data
+
col_matrix_width
;
}
for
(
int
kw
=
plw
;
kw
<
filter_width
-
prw
;
++
kw
)
{
std
::
memcpy
(
dst_data
,
src_data
+
(
kw
-
plw
),
sizeof
(
T
)
*
output_width
);
dst_data
=
dst_data
+
col_matrix_width
;
}
int
i
=
1
;
for
(
int
kw
=
filter_width
-
prw
;
kw
<
filter_width
;
++
kw
,
++
i
)
{
std
::
memcpy
(
dst_data
,
src_data
+
(
kw
-
plw
),
sizeof
(
T
)
*
(
output_width
-
i
));
dst_data
=
dst_data
+
col_matrix_width
;
continue
;
}
std
::
memcpy
(
dst_data
+
plw
,
src_data
,
copy_size
);
dst_data
=
dst_data
+
col_matrix_width
;
src_data
=
src_data
+
im_width
;
}
}
}
}
else
{
LOG
(
FATAL
)
<<
"Not implement yet"
;
return
;
}
// filter_width != 1
// fill width padding
for
(
int
ic
=
0
;
ic
<
im_channels
;
++
ic
)
{
// TODO(TJ): move * outside
T
*
dst_data_ic
=
col_data
+
ic
*
col_block_ic
;
for
(
int
kh
=
0
;
kh
<
filter_height
;
++
kh
)
{
// TODO(TJ): move * outside
T
*
dst_data_kh
=
dst_data_ic
+
kh
*
col_block_fh
;
for
(
T
*
dst_data
:
{
dst_data_kh
,
dst_data_kh
+
(
filter_width
-
prw
)
*
col_matrix_width
+
output_width
-
1
})
{
// TODO(TJ): from plh, saving repeated assignment
for
(
int
oh
=
0
;
oh
<
output_height
;
++
oh
)
{
*
dst_data
=
pad
;
dst_data
=
dst_data
+
output_width
;
}
}
}
}
// TODO(TJ): use array like: size_t copy_size[kw]={sizeof(T) *
// (output_width-1)}
// length of copy_size is equal kw.
for
(
int
oh
=
0
;
oh
<
output_height
;
++
oh
)
{
const
T
*
im_data_start
=
im_data
+
(
oh
-
plh
>
0
?
oh
-
plh
:
0
)
*
im_width
;
T
*
dst_data
=
col_data
+
oh
*
output_width
;
for
(
int
ic
=
0
;
ic
<
im_channels
;
++
ic
)
{
const
T
*
src_data
=
im_data_start
+
ic
*
im_size
;
for
(
int
kh
=
0
;
kh
<
filter_height
;
++
kh
)
{
if
((
oh
<
plh
&&
kh
<
plh
)
||
(
oh
>
(
output_height
-
prh
-
1
)
&&
kh
>
(
filter_height
-
prh
-
1
)))
{
dst_data
=
dst_data
+
filter_width
*
col_matrix_width
;
continue
;
}
// TODO(TJ): reuse plw-kw outside this for
// try to unify
for
(
int
kw
=
0
;
kw
<
plw
;
++
kw
)
{
std
::
memcpy
(
dst_data
+
(
plw
-
kw
),
src_data
,
sizeof
(
T
)
*
(
output_width
-
(
plw
-
kw
)));
dst_data
=
dst_data
+
col_matrix_width
;
}
for
(
int
kw
=
plw
;
kw
<
filter_width
-
prw
;
++
kw
)
{
std
::
memcpy
(
dst_data
,
src_data
+
(
kw
-
plw
),
sizeof
(
T
)
*
output_width
);
dst_data
=
dst_data
+
col_matrix_width
;
}
int
i
=
1
;
for
(
int
kw
=
filter_width
-
prw
;
kw
<
filter_width
;
++
kw
,
++
i
)
{
std
::
memcpy
(
dst_data
,
src_data
+
(
kw
-
plw
),
sizeof
(
T
)
*
(
output_width
-
i
));
dst_data
=
dst_data
+
col_matrix_width
;
}
src_data
=
src_data
+
im_width
;
}
}
}
}
...
...
paddle/fluid/operators/math/im2col_test.cc
浏览文件 @
65d418f0
...
...
@@ -227,7 +227,8 @@ void benchIm2col(int ic, int ih, int iw, int fh, int fw, int ph, int pw) {
auto
t3
=
GetCurrentMs
();
LOG
(
INFO
)
<<
"before: "
<<
(
t3
-
t2
)
/
repeat
<<
",after: "
<<
(
t2
-
t1
)
/
repeat
;
<<
",after: "
<<
(
t2
-
t1
)
/
repeat
<<
",boost: "
<<
((
t3
-
t2
)
/
(
t2
-
t1
)
-
1
)
*
100
<<
"%"
;
}
TEST
(
math
,
im2col_cputest
)
{
...
...
@@ -244,6 +245,10 @@ TEST(math, im2col_cputest) {
// height != width
testIm2colCPU
(
/*ic*/
2
,
/*ih*/
5
,
/*iw*/
4
,
/*fh*/
2
,
/*fw*/
3
,
/*ph*/
p
,
/*pw*/
p
);
testIm2colCPU
(
/*ic*/
2
,
/*ih*/
5
,
/*iw*/
4
,
/*fh*/
1
,
/*fw*/
3
,
/*ph*/
p
,
/*pw*/
p
);
testIm2colCPU
(
/*ic*/
2
,
/*ih*/
4
,
/*iw*/
5
,
/*fh*/
3
,
/*fw*/
1
,
/*ph*/
p
,
/*pw*/
p
);
// filter == 1
testIm2colCPU
(
/*ic*/
3
,
/*ih*/
4
,
/*iw*/
4
,
/*fh*/
1
,
/*fw*/
1
,
/*ph*/
p
,
...
...
@@ -251,13 +256,14 @@ TEST(math, im2col_cputest) {
testIm2colCPU
(
/*ic*/
3
,
/*ih*/
3
,
/*iw*/
4
,
/*fh*/
1
,
/*fw*/
1
,
/*ph*/
p
,
/*pw*/
p
);
}
// padding_h != padding_w
testIm2colCPU
(
/*ic*/
2
,
/*ih*/
4
,
/*iw*/
4
,
/*fh*/
2
,
/*fw*/
3
,
/*ph*/
1
,
/*pw*/
2
);
// benchmark
for
(
int
p
:
{
0
,
1
,
2
})
{
for
(
int
k
:
{
3
,
5
})
{
for
(
int
p
:
{
0
,
1
})
{
for
(
int
k
:
{
1
,
3
,
5
})
{
LOG
(
INFO
)
<<
"padding == "
<<
p
<<
", filter == "
<<
k
;
benchIm2col
(
/*ic*/
3
,
/*ih*/
224
,
/*iw*/
224
,
/*fh*/
k
,
/*fw*/
k
,
/*ph*/
p
,
/*pw*/
p
);
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录