提交 6477b443 编写于 作者: D dzhwinter

fix default value. test=develop

上级 131e4a3b
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import six
import unittest
import time
import math
import multiprocessing
import paddle
import paddle.fluid.core as core
import paddle.fluid as fluid
from paddle.fluid import compiler
# open eager delete mode
os.environ['FLAGS_eager_delete_tensor_gb'] = '0.0'
os.environ['FLAGS_fast_eager_deletion_mode'] = 'true'
os.environ['CPU_NUM'] = '2'
class BuildIrMemOptBase(unittest.TestCase):
def check_network_convergence(self,
network,
use_cuda=True,
memory_opt=True,
use_ir_memory_optimize=True,
enable_inplace=True,
iter=5):
if use_cuda and not core.is_compiled_with_cuda():
print('Skip use_cuda=True because Paddle is not compiled with cuda')
return
if os.name == 'nt':
print(
'Skip use_parallel_executor=True because Paddle comes without parallel support on windows'
)
return
batch_size = 32
batch_size *= fluid.core.get_cuda_device_count() if use_cuda else int(
os.environ.get('CPU_NUM', multiprocessing.cpu_count()))
# build network
word_dict = paddle.dataset.imdb.word_dict()
train_reader = paddle.batch(
paddle.dataset.imdb.train(word_dict), batch_size=batch_size)
data = fluid.layers.data(
name="words", shape=[1], dtype="int64", lod_level=1)
label = fluid.layers.data(name="label", shape=[1], dtype="int64")
cost = network(data, label, len(word_dict))
optimizer = fluid.optimizer.Adam(learning_rate=0.2)
optimizer.minimize(cost)
if memory_opt:
fluid.memory_optimize(main)
# execution
place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace()
feeder = fluid.DataFeeder(feed_list=[data, label], place=place)
reader = feeder.decorate_reader(train_reader, multi_devices=True)
exe = fluid.Executor(place)
fluid.default_startup_program().random_seed = 1
fluid.default_main_program().random_seed = 1
exe.run(fluid.default_startup_program())
train_cp = compiler.CompiledProgram(fluid.default_main_program())
train_cp = train_cp.with_data_parallel(loss_name=cost.name)
fetch_list = [cost.name]
begin = time.time()
first_loss, last_loss = None, None
step_id = 0
custom_iter = getattr(self, "iter")
if not custom_iter == None:
iter = custom_iter
for data in reader():
ret = exe.run(train_cp, feed=data, fetch_list=fetch_list)
print(ret)
step_id += 1
if step_id == 0:
first_loss = res[0]
if step_id == iter:
last_loss = res[0]
break
end = time.time()
print("%.4f Instance per second" % (
(batch_size * iter) / (end - begin)))
avg_last_loss_val = np.array(last_loss).mean()
avg_first_loss_val = np.array(first_loss).mean()
if math.isnan(float(avg_last_loss_val)) or math.isnan(
float(avg_first_loss_val)):
sys.exit("got NaN loss, training failed.")
print(first_loss, last_loss)
return first_loss, last_loss
class TestIrMemOptBase(BuildIrMemOptBase):
def setUp(self):
self.network = None
def test_network(self):
if self.network is None:
return
baseline_first_loss, baseline_last_loss = None, None
for use_cuda in [True, False]:
for use_python_mem_opt in [True, False]:
print(
'network: {}, use_cuda: {}, use_python_mem_opt: {}, use_ir_mem_opt : {}'.
format(self.network.__name__, use_cuda, use_python_mem_opt,
not use_python_mem_opt))
with fluid.program_guard(fluid.Program(), fluid.Program()):
with fluid.scope_guard(core.Scope()):
if use_cuda is False and use_python_mem_opt is False:
baseline_first_loss, baseline_last_loss = self.check_network_convergence(
self.network,
use_cuda=use_cuda,
memory_opt=use_python_mem_opt)
else:
cur_first_loss, cur_last_loss = self.check_network_convergence(
self.network,
use_cuda=use_cuda,
memory_opt=use_python_mem_opt)
for loss in zip(baseline_first_loss,
cur_first_loss):
self.assertAlmostEqual(loss[0], loss[1], 1e-5)
for loss in zip(baseline_last_loss, cur_last_loss):
self.assertAlmostEqual(loss[0], loss[1], 1e-5)
......@@ -56,6 +56,8 @@ def train(network, use_cuda, use_parallel_executor, batch_size=32, pass_num=2):
train_reader, multi_devices=use_parallel_executor)
exe = fluid.Executor(place)
fluid.default_startup_program().random_seed = 1
fluid.default_main_program().random_seed = 1
exe.run(fluid.default_startup_program())
train_cp = compiler.CompiledProgram(fluid.default_main_program())
......
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import print_function
import paddle.fluid as fluid
import unittest
from ir_memory_optimize_net_base import TestIrMemOptBase
from paddle.fluid.layers.control_flow import ConditionalBlock
def lstm_net(data,
label,
dict_dim,
emb_dim=128,
hid_dim=128,
hid_dim2=96,
class_dim=2,
emb_lr=30.0):
emb = fluid.layers.embedding(
input=data,
size=[dict_dim, emb_dim],
param_attr=fluid.ParamAttr(learning_rate=emb_lr))
fc0 = fluid.layers.fc(input=emb, size=hid_dim * 4)
lstm_h, c = fluid.layers.dynamic_lstm(
input=fc0, size=hid_dim * 4, is_reverse=False)
lstm_max = fluid.layers.sequence_pool(input=lstm_h, pool_type='max')
lstm_max_tanh = fluid.layers.tanh(lstm_max)
fc1 = fluid.layers.fc(input=lstm_max_tanh, size=hid_dim2, act='tanh')
prediction = fluid.layers.fc(input=fc1, size=class_dim, act='softmax')
cost = fluid.layers.cross_entropy(input=prediction, label=label)
avg_cost = fluid.layers.mean(x=cost)
return avg_cost
class TestIrMemOptRNN(TestIrMemOptBase):
def setUp(self):
self.network = lstm_net
self.iter = 2
if __name__ == "__main__":
unittest.main()
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# nlp model stack of op operate on lod. It's a classical test case in optimize pass.
from __future__ import print_function
import paddle.fluid as fluid
import unittest
from ir_memory_optimize_net_base import TestIrMemOptBase
def lstm_net(data,
label,
dict_dim,
emb_dim=128,
hid_dim=128,
hid_dim2=96,
class_dim=2,
emb_lr=30.0):
emb = fluid.layers.embedding(
input=data,
size=[dict_dim, emb_dim],
param_attr=fluid.ParamAttr(learning_rate=emb_lr))
fc0 = fluid.layers.fc(input=emb, size=hid_dim * 4)
lstm_h, c = fluid.layers.dynamic_lstm(
input=fc0, size=hid_dim * 4, is_reverse=False)
lstm_max = fluid.layers.sequence_pool(input=lstm_h, pool_type='max')
lstm_max_tanh = fluid.layers.tanh(lstm_max)
fc1 = fluid.layers.fc(input=lstm_max_tanh, size=hid_dim2, act='tanh')
prediction = fluid.layers.fc(input=fc1, size=class_dim, act='softmax')
cost = fluid.layers.cross_entropy(input=prediction, label=label)
avg_cost = fluid.layers.mean(x=cost)
return avg_cost
class TestIrMemOptRNN(TestIrMemOptBase):
def setUp(self):
self.network = lstm_net
if __name__ == "__main__":
unittest.main()
......@@ -28,9 +28,6 @@ os.environ[
from test_parallel_executor_transformer import transformer, ModelHyperParams, transformer_model, transformer, prepare_batch_input
from parallel_executor_test_base import TestParallelExecutorBase
# disable temporarily because of timeout.
sys.exit(0)
# NOTE(dzhwinter): test diferent strategy colisions.
# open the eager delete tensor strategy by default.
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册