提交 64606eaf 编写于 作者: Y ying

Merge branch 'develop' into fix_rendering_error_of_transpose_op

...@@ -500,6 +500,16 @@ swish ...@@ -500,6 +500,16 @@ swish
.. autofunction:: paddle.v2.fluid.layers.swish .. autofunction:: paddle.v2.fluid.layers.swish
:noindex: :noindex:
edit_distance
---------------
.. autofunction:: paddle.v2.fluid.layers.edit_distance_error
:noindex:
ctc_greedy_decoder
---------------
.. autofunction:: paddle.v2.fluid.layers.ctc_greedy_decoder
:noindex:
l2_normalize l2_normalize
------------ ------------
.. autofunction:: paddle.v2.fluid.layers.l2_normalize .. autofunction:: paddle.v2.fluid.layers.l2_normalize
......
...@@ -156,6 +156,7 @@ op_library(parallel_do_op DEPS executor) ...@@ -156,6 +156,7 @@ op_library(parallel_do_op DEPS executor)
# Regist multiple Kernel to pybind # Regist multiple Kernel to pybind
if (WITH_GPU) if (WITH_GPU)
op_library(conv_op SRCS conv_op.cc conv_op.cu.cc conv_cudnn_op.cu.cc DEPS vol2col) op_library(conv_op SRCS conv_op.cc conv_op.cu.cc conv_cudnn_op.cu.cc DEPS vol2col)
op_library(edit_distance_op SRCS edit_distance_op.cc edit_distance_op.cu DEPS math_function)
op_library(pool_op SRCS pool_op.cc pool_op.cu.cc pool_cudnn_op.cu.cc DEPS pooling) op_library(pool_op SRCS pool_op.cc pool_op.cu.cc pool_cudnn_op.cu.cc DEPS pooling)
op_library(conv_transpose_op SRCS conv_transpose_op.cc conv_transpose_op.cu.cc op_library(conv_transpose_op SRCS conv_transpose_op.cc conv_transpose_op.cu.cc
conv_transpose_cudnn_op.cu.cc DEPS vol2col) conv_transpose_cudnn_op.cu.cc DEPS vol2col)
......
...@@ -25,6 +25,8 @@ class EditDistanceOp : public framework::OperatorWithKernel { ...@@ -25,6 +25,8 @@ class EditDistanceOp : public framework::OperatorWithKernel {
PADDLE_ENFORCE(ctx->HasInput("Hyps"), "Input(Hyps) shouldn't be null."); PADDLE_ENFORCE(ctx->HasInput("Hyps"), "Input(Hyps) shouldn't be null.");
PADDLE_ENFORCE(ctx->HasInput("Refs"), "Input(Refs) shouldn't be null."); PADDLE_ENFORCE(ctx->HasInput("Refs"), "Input(Refs) shouldn't be null.");
PADDLE_ENFORCE(ctx->HasOutput("Out"), "Output(Out) shouldn't be null."); PADDLE_ENFORCE(ctx->HasOutput("Out"), "Output(Out) shouldn't be null.");
PADDLE_ENFORCE(ctx->HasOutput("SequenceNum"),
"Output(SequenceNum) shouldn't be null.");
auto hyp_dims = ctx->GetInputDim("Hyps"); auto hyp_dims = ctx->GetInputDim("Hyps");
auto ref_dims = ctx->GetInputDim("Refs"); auto ref_dims = ctx->GetInputDim("Refs");
PADDLE_ENFORCE(hyp_dims.size() == 2 && hyp_dims[1] == 1, PADDLE_ENFORCE(hyp_dims.size() == 2 && hyp_dims[1] == 1,
...@@ -34,6 +36,7 @@ class EditDistanceOp : public framework::OperatorWithKernel { ...@@ -34,6 +36,7 @@ class EditDistanceOp : public framework::OperatorWithKernel {
"Input(Refs) must be a 2-D LoDTensor with the 2nd dimension " "Input(Refs) must be a 2-D LoDTensor with the 2nd dimension "
"equal to 1."); "equal to 1.");
ctx->SetOutputDim("Out", ctx->GetInputDim("Refs")); ctx->SetOutputDim("Out", ctx->GetInputDim("Refs"));
ctx->SetOutputDim("SequenceNum", {1});
} }
protected: protected:
...@@ -54,6 +57,7 @@ class EditDistanceOpMaker : public framework::OpProtoAndCheckerMaker { ...@@ -54,6 +57,7 @@ class EditDistanceOpMaker : public framework::OpProtoAndCheckerMaker {
AddInput("Refs", AddInput("Refs",
"(2-D LoDTensor<int64_t>, 2nd dim. equal to 1) " "(2-D LoDTensor<int64_t>, 2nd dim. equal to 1) "
"The indices for reference strings."); "The indices for reference strings.");
AddOutput("SequenceNum", "The sequence count of current batch");
AddAttr<bool>("normalized", AddAttr<bool>("normalized",
"(bool, default false) Indicated whether to normalize " "(bool, default false) Indicated whether to normalize "
"the edit distance by the length of reference string.") "the edit distance by the length of reference string.")
......
...@@ -14,6 +14,7 @@ limitations under the License. */ ...@@ -14,6 +14,7 @@ limitations under the License. */
#include <algorithm> #include <algorithm>
#include "paddle/framework/op_registry.h" #include "paddle/framework/op_registry.h"
#include "paddle/operators/math/math_function.h"
#include "paddle/platform/cuda_helper.h" #include "paddle/platform/cuda_helper.h"
#include "paddle/platform/gpu_info.h" #include "paddle/platform/gpu_info.h"
...@@ -72,6 +73,8 @@ class EditDistanceGPUKernel : public framework::OpKernel<T> { ...@@ -72,6 +73,8 @@ class EditDistanceGPUKernel : public framework::OpKernel<T> {
auto* x1_t = ctx.Input<framework::LoDTensor>("Hyps"); auto* x1_t = ctx.Input<framework::LoDTensor>("Hyps");
auto* x2_t = ctx.Input<framework::LoDTensor>("Refs"); auto* x2_t = ctx.Input<framework::LoDTensor>("Refs");
auto* sequence_num = ctx.Output<framework::Tensor>("SequenceNum");
sequence_num->mutable_data<int64_t>(ctx.GetPlace());
auto normalized = ctx.Attr<bool>("normalized"); auto normalized = ctx.Attr<bool>("normalized");
auto stream = reinterpret_cast<const platform::CUDADeviceContext&>( auto stream = reinterpret_cast<const platform::CUDADeviceContext&>(
...@@ -88,7 +91,11 @@ class EditDistanceGPUKernel : public framework::OpKernel<T> { ...@@ -88,7 +91,11 @@ class EditDistanceGPUKernel : public framework::OpKernel<T> {
"Reference string %d is empty.", i); "Reference string %d is empty.", i);
} }
auto num_strs = hyp_lod.size() - 1; const size_t num_strs = hyp_lod.size() - 1;
math::SetConstant<platform::CUDADeviceContext, int64_t> set_constant;
set_constant(ctx.template device_context<platform::CUDADeviceContext>(),
sequence_num, static_cast<int64_t>(num_strs));
out_t->Resize({static_cast<int64_t>(num_strs), 1}); out_t->Resize({static_cast<int64_t>(num_strs), 1});
out_t->mutable_data<T>(ctx.GetPlace()); out_t->mutable_data<T>(ctx.GetPlace());
auto out = out_t->data<T>(); auto out = out_t->data<T>();
......
...@@ -16,7 +16,6 @@ limitations under the License. */ ...@@ -16,7 +16,6 @@ limitations under the License. */
#include <algorithm> #include <algorithm>
#include "paddle/framework/eigen.h" #include "paddle/framework/eigen.h"
#include "paddle/framework/op_registry.h" #include "paddle/framework/op_registry.h"
namespace paddle { namespace paddle {
namespace operators { namespace operators {
...@@ -28,6 +27,8 @@ class EditDistanceKernel : public framework::OpKernel<T> { ...@@ -28,6 +27,8 @@ class EditDistanceKernel : public framework::OpKernel<T> {
auto* x1_t = ctx.Input<framework::LoDTensor>("Hyps"); auto* x1_t = ctx.Input<framework::LoDTensor>("Hyps");
auto* x2_t = ctx.Input<framework::LoDTensor>("Refs"); auto* x2_t = ctx.Input<framework::LoDTensor>("Refs");
auto* sequence_num = ctx.Output<framework::Tensor>("SequenceNum");
int64_t* seq_num_data = sequence_num->mutable_data<int64_t>(ctx.GetPlace());
auto normalized = ctx.Attr<bool>("normalized"); auto normalized = ctx.Attr<bool>("normalized");
...@@ -41,6 +42,7 @@ class EditDistanceKernel : public framework::OpKernel<T> { ...@@ -41,6 +42,7 @@ class EditDistanceKernel : public framework::OpKernel<T> {
"Reference string %d is empty.", i); "Reference string %d is empty.", i);
} }
auto num_strs = hyp_lod.size() - 1; auto num_strs = hyp_lod.size() - 1;
*seq_num_data = static_cast<int64_t>(num_strs);
out_t->Resize({static_cast<int64_t>(num_strs), 1}); out_t->Resize({static_cast<int64_t>(num_strs), 1});
out_t->mutable_data<float>(ctx.GetPlace()); out_t->mutable_data<float>(ctx.GetPlace());
......
...@@ -205,3 +205,63 @@ class ChunkEvaluator(Evaluator): ...@@ -205,3 +205,63 @@ class ChunkEvaluator(Evaluator):
[precision], dtype='float32'), np.array( [precision], dtype='float32'), np.array(
[recall], dtype='float32'), np.array( [recall], dtype='float32'), np.array(
[f1_score], dtype='float32') [f1_score], dtype='float32')
class EditDistance(Evaluator):
"""
Accumulate edit distance sum and sequence number from mini-batches and
compute the average edit_distance of all batches.
Args:
input: the sequences predicted by network.
label: the target sequences which must has same sequence count
with input.
ignored_tokens(list of int): Tokens that should be removed before
calculating edit distance.
Example:
exe = fluid.executor(place)
distance_evaluator = fluid.Evaluator.EditDistance(input, label)
for epoch in PASS_NUM:
distance_evaluator.reset(exe)
for data in batches:
loss, sum_distance = exe.run(fetch_list=[cost] + distance_evaluator.metrics)
avg_distance = distance_evaluator.eval(exe)
pass_distance = distance_evaluator.eval(exe)
In the above example:
'sum_distance' is the sum of the batch's edit distance.
'avg_distance' is the average of edit distance from the firt batch to the current batch.
'pass_distance' is the average of edit distance from all the pass.
"""
def __init__(self, input, label, ignored_tokens=None, **kwargs):
super(EditDistance, self).__init__("edit_distance", **kwargs)
main_program = self.helper.main_program
if main_program.current_block().idx != 0:
raise ValueError("You can only invoke Evaluator in root block")
self.total_error = self.create_state(
dtype='float32', shape=[1], suffix='total_error')
self.seq_num = self.create_state(
dtype='int64', shape=[1], suffix='seq_num')
error, seq_num = layers.edit_distance(
input=input, label=label, ignored_tokens=ignored_tokens)
#error = layers.cast(x=error, dtype='float32')
sum_error = layers.reduce_sum(error)
layers.sums(input=[self.total_error, sum_error], out=self.total_error)
layers.sums(input=[self.seq_num, seq_num], out=self.seq_num)
self.metrics.append(sum_error)
def eval(self, executor, eval_program=None):
if eval_program is None:
eval_program = Program()
block = eval_program.current_block()
with program_guard(main_program=eval_program):
total_error = _clone_var_(block, self.total_error)
seq_num = _clone_var_(block, self.seq_num)
seq_num = layers.cast(x=seq_num, dtype='float32')
out = layers.elementwise_div(x=total_error, y=seq_num)
return np.array(executor.run(eval_program, fetch_list=[out])[0])
...@@ -50,10 +50,13 @@ __all__ = [ ...@@ -50,10 +50,13 @@ __all__ = [
'sequence_last_step', 'sequence_last_step',
'dropout', 'dropout',
'split', 'split',
'ctc_greedy_decoder',
'edit_distance',
'l2_normalize', 'l2_normalize',
'matmul', 'matmul',
'warpctc', 'warpctc',
'sequence_reshape', 'sequence_reshape',
'transpose',
] ]
...@@ -1891,6 +1894,146 @@ def matmul(x, y, transpose_x=False, transpose_y=False, name=None): ...@@ -1891,6 +1894,146 @@ def matmul(x, y, transpose_x=False, transpose_y=False, name=None):
return out return out
def edit_distance(input,
label,
normalized=False,
ignored_tokens=None,
name=None):
"""
EditDistance operator computes the edit distances between a batch of hypothesis strings and their references. Edit distance, also called Levenshtein distance, measures how dissimilar two strings are by counting the minimum number of operations to transform one string into anthor. Here the operations include insertion, deletion, and substitution. For example, given hypothesis string A = "kitten" and reference B = "sitting", the edit distance is 3 for A will be transformed into B at least after two substitutions and one insertion:
"kitten" -> "sitten" -> "sittin" -> "sitting"
Input(Hyps) is a LoDTensor consisting of all the hypothesis strings with the total number denoted by `batch_size`, and the separation is specified by the LoD information. And the `batch_size` reference strings are arranged in order in the same way in the LoDTensor Input(Refs).
Output(Out) contains the `batch_size` results and each stands for the edit stance for a pair of strings respectively. If Attr(normalized) is true, the edit distance will be divided by the length of reference string.
Args:
input(Variable): The indices for hypothesis strings.
label(Variable): The indices for reference strings.
normalized(bool): Indicated whether to normalize the edit distance by the length of reference string.
ignored_tokens(list of int): Tokens that should be removed before calculating edit distance.
Returns:
Variable: sequence-to-sequence edit distance in shape [batch_size, 1].
Examples:
.. code-block:: python
x = fluid.layers.data(name='x', shape=[8], dtype='float32')
y = fluid.layers.data(name='y', shape=[7], dtype='float32')
cost = fluid.layers.edit_distance(input=x,label=y)
"""
helper = LayerHelper("edit_distance", **locals())
# remove some tokens from input and labels
if ignored_tokens is not None and len(ignored_tokens) > 0:
erased_input = helper.create_tmp_variable(dtype="int64")
erased_label = helper.create_tmp_variable(dtype="int64")
helper.append_op(
type="sequence_erase",
inputs={"X": [input]},
outputs={"Out": [erased_input]},
attrs={"tokens": ignored_tokens})
input = erased_input
helper.append_op(
type="sequence_erase",
inputs={"X": [label]},
outputs={"Out": [erase_label]},
attrs={"tokens": ignored_tokens})
label = erased_label
# edit distance op
edit_distance_out = helper.create_tmp_variable(dtype="int64")
sequence_num = helper.create_tmp_variable(dtype="int64")
helper.append_op(
type="edit_distance",
inputs={"Hyps": [input],
"Refs": [label]},
outputs={"Out": [edit_distance_out],
"SequenceNum": [sequence_num]},
attrs={"normalized": normalized})
return edit_distance_out, sequence_num
def ctc_greedy_decoder(input, blank, name=None):
"""
This op is used to decode sequences by greedy policy by below steps:
1. Get the indexes of max value for each row in input. a.k.a. numpy.argmax(input, axis=0).
2. For each sequence in result of step1, merge repeated tokens between two blanks and delete all blanks.
A simple example as below:
.. code-block:: text
Given:
input.data = [[0.6, 0.1, 0.3, 0.1],
[0.3, 0.2, 0.4, 0.1],
[0.1, 0.5, 0.1, 0.3],
[0.5, 0.1, 0.3, 0.1],
[0.5, 0.1, 0.3, 0.1],
[0.2, 0.2, 0.2, 0.4],
[0.2, 0.2, 0.1, 0.5],
[0.5, 0.1, 0.3, 0.1]]
input.lod = [[0, 4, 8]]
Then:
output.data = [[2],
[1],
[3]]
output.lod = [[0, 2, 3]]
Args:
input(Variable): (LoDTensor<float>), the probabilities of variable-length sequences, which is a 2-D Tensor with LoD information. It's shape is [Lp, num_classes + 1], where Lp is the sum of all input sequences' length and num_classes is the true number of classes. (not including the blank label).
blank(int): the blank label index of Connectionist Temporal Classification (CTC) loss, which is in thehalf-opened interval [0, num_classes + 1).
Returns:
Variable: CTC greedy decode result.
Examples:
.. code-block:: python
x = fluid.layers.data(name='x', shape=[8], dtype='float32')
cost = fluid.layers.ctc_greedy_decoder(input=x, blank=0)
"""
helper = LayerHelper("ctc_greedy_decoder", **locals())
# top 1 op
topk_out = helper.create_tmp_variable(dtype=input.dtype)
topk_indices = helper.create_tmp_variable(dtype="int64")
helper.append_op(
type="top_k",
inputs={"X": [input]},
outputs={"Out": [topk_out],
"Indices": [topk_indices]},
attrs={"k": 1})
# ctc align op
ctc_out = helper.create_tmp_variable(dtype="int64")
helper.append_op(
type="ctc_align",
inputs={"Input": [topk_indices]},
outputs={"Output": [ctc_out]},
attrs={"merge_repeated": True,
"blank": blank})
return ctc_out
def warpctc(input, label, blank=0, norm_by_times=False, **kwargs): def warpctc(input, label, blank=0, norm_by_times=False, **kwargs):
""" """
An operator integrating the open source Warp-CTC library An operator integrating the open source Warp-CTC library
...@@ -1915,7 +2058,7 @@ def warpctc(input, label, blank=0, norm_by_times=False, **kwargs): ...@@ -1915,7 +2058,7 @@ def warpctc(input, label, blank=0, norm_by_times=False, **kwargs):
Temporal Classification (CTC) loss, which is in the Temporal Classification (CTC) loss, which is in the
half-opened interval [0, num_classes + 1). half-opened interval [0, num_classes + 1).
norm_by_times: (bool, default: false), whether to normalize norm_by_times: (bool, default: false), whether to normalize
the gradients by the number of time-step,which is also the the gradients by the number of time-step, which is also the
sequence's length. There is no need to normalize the gradients sequence's length. There is no need to normalize the gradients
if warpctc layer was follewed by a mean_op. if warpctc layer was follewed by a mean_op.
......
...@@ -61,6 +61,7 @@ class TestEditDistanceOp(OpTest): ...@@ -61,6 +61,7 @@ class TestEditDistanceOp(OpTest):
num_strs = len(x1_lod) - 1 num_strs = len(x1_lod) - 1
distance = np.zeros((num_strs, 1)).astype("float32") distance = np.zeros((num_strs, 1)).astype("float32")
sequence_num = np.array(2).astype("int64")
for i in range(0, num_strs): for i in range(0, num_strs):
distance[i] = Levenshtein( distance[i] = Levenshtein(
hyp=x1[x1_lod[i]:x1_lod[i + 1]], hyp=x1[x1_lod[i]:x1_lod[i + 1]],
...@@ -70,7 +71,7 @@ class TestEditDistanceOp(OpTest): ...@@ -70,7 +71,7 @@ class TestEditDistanceOp(OpTest):
distance[i] = distance[i] / len_ref distance[i] = distance[i] / len_ref
self.attrs = {'normalized': normalized} self.attrs = {'normalized': normalized}
self.inputs = {'Hyps': (x1, [x1_lod]), 'Refs': (x2, [x2_lod])} self.inputs = {'Hyps': (x1, [x1_lod]), 'Refs': (x2, [x2_lod])}
self.outputs = {'Out': distance} self.outputs = {'Out': distance, 'SequenceNum': sequence_num}
def test_check_output(self): def test_check_output(self):
self.check_output() self.check_output()
...@@ -89,6 +90,7 @@ class TestEditDistanceOpNormalized(OpTest): ...@@ -89,6 +90,7 @@ class TestEditDistanceOpNormalized(OpTest):
num_strs = len(x1_lod) - 1 num_strs = len(x1_lod) - 1
distance = np.zeros((num_strs, 1)).astype("float32") distance = np.zeros((num_strs, 1)).astype("float32")
sequence_num = np.array(3).astype("int64")
for i in range(0, num_strs): for i in range(0, num_strs):
distance[i] = Levenshtein( distance[i] = Levenshtein(
hyp=x1[x1_lod[i]:x1_lod[i + 1]], hyp=x1[x1_lod[i]:x1_lod[i + 1]],
...@@ -98,7 +100,7 @@ class TestEditDistanceOpNormalized(OpTest): ...@@ -98,7 +100,7 @@ class TestEditDistanceOpNormalized(OpTest):
distance[i] = distance[i] / len_ref distance[i] = distance[i] / len_ref
self.attrs = {'normalized': normalized} self.attrs = {'normalized': normalized}
self.inputs = {'Hyps': (x1, [x1_lod]), 'Refs': (x2, [x2_lod])} self.inputs = {'Hyps': (x1, [x1_lod]), 'Refs': (x2, [x2_lod])}
self.outputs = {'Out': distance} self.outputs = {'Out': distance, 'SequenceNum': sequence_num}
def test_check_output(self): def test_check_output(self):
self.check_output() self.check_output()
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册