未验证 提交 633756ad 编写于 作者: H helinwang 提交者: GitHub

Merge pull request #8361 from tonyyang-svail/backward_on_parallel_do

Backward on parallel do using nccl
......@@ -55,11 +55,13 @@ static void CreateTensor(Variable* var, proto::VarType::Type var_type) {
var->GetMutable<platform::PlaceList>();
} else if (var_type == proto::VarType::READER) {
var->GetMutable<ReaderHolder>();
} else if (var_type == proto::VarType::NCCL_COM) {
// GetMutable will be called in ncclInit
} else {
PADDLE_THROW(
"Variable type %d is not in "
"[LOD_TENSOR, SELECTED_ROWS, FEED_MINIBATCH, FETCH_LIST, "
"LOD_RANK_TABLE, PLACE_LIST, READER]",
"LOD_RANK_TABLE, PLACE_LIST, READER, NCCL_COM]",
var_type);
}
}
......@@ -120,14 +122,13 @@ void Executor::Run(const ProgramDesc& pdesc, Scope* scope, int block_id,
for (auto& op_desc : block.AllOps()) {
auto op = paddle::framework::OpRegistry::CreateOp(*op_desc);
VLOG(4) << op->DebugStringEx(local_scope);
platform::DeviceContextPool& pool = platform::DeviceContextPool::Instance();
platform::RecordEvent record_event(op->Type(), pool.Get(place_));
VLOG(3) << place_ << " " << op->DebugStringEx(local_scope);
op->Run(*local_scope, place_);
// Wait current device context.
VLOG(3) << op->DebugStringEx(local_scope);
if (FLAGS_benchmark) {
VLOG(2) << "Memory used after operator " + op->Type() + " running: "
<< memory::memory_usage(place_);
......
......@@ -113,6 +113,7 @@ message VarType {
PLACE_LIST = 14;
READER = 15;
CHANNEL = 16;
NCCL_COM = 17;
}
required Type type = 1;
......
......@@ -14,10 +14,13 @@ limitations under the License. */
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/operators/nccl/nccl_gpu_common.h"
#include "paddle/fluid/operators/nccl/nccl_gpu_common.h"
namespace paddle {
namespace operators {
static constexpr char kParallelScopes[] = "parallel_scopes";
// NCCLinitOp
class NCCLInitOp : public framework::OperatorBase {
public:
......@@ -29,11 +32,22 @@ class NCCLInitOp : public framework::OperatorBase {
private:
void RunImpl(const framework::Scope &scope,
const platform::Place &place) const override {
PADDLE_ENFORCE_NOT_NULL(scope.FindVar(Input(kParallelScopes)),
"Can not find variable '%s' in the scope.",
kParallelScopes);
const auto &name = Output("Communicator");
PADDLE_ENFORCE_NOT_NULL(scope.FindVar(name),
"Can not find variable '%s' in the scope.", name);
std::vector<int> gpus = Attr<std::vector<int>>("gpus");
PADDLE_ENFORCE(!gpus.empty(), "Attr(gpus) should not be empty.");
// A parallel do may not use all the gpus. For example, the batch size is 7
// in the last batch while we have 8 gpu. In this case, parallel_do will
// create 7 parallel scopes, so should ncclInitOp create 7 gpu peers
auto &parallel_scopes = scope.FindVar(Input(kParallelScopes))
->Get<std::vector<framework::Scope *>>();
std::vector<int> gpus(parallel_scopes.size());
for (int i = 0; i < static_cast<int>(parallel_scopes.size()); ++i) {
gpus[i] = i;
}
PADDLE_ENFORCE(!gpus.empty(), "NCCL init with 0 gpus.");
if (scope.FindVar(name) == nullptr) {
PADDLE_THROW("Output(Communicator) is needed for ncclInit operator.");
......@@ -45,17 +59,29 @@ class NCCLInitOp : public framework::OperatorBase {
}
};
class NCCLInitOpVarTypeInference : public framework::VarTypeInference {
public:
void operator()(const framework::OpDesc &op_desc,
framework::BlockDesc *block) const override {
auto out_var_name = op_desc.Output("Communicator").front();
auto &out_var = block->FindRecursiveOrCreateVar(out_var_name);
auto var_type = framework::proto::VarType::NCCL_COM;
out_var.SetType(var_type);
}
};
class NCCLInitOpShapeInference : public framework::InferShapeBase {
public:
void operator()(framework::InferShapeContext *ctx) const override {}
};
class NCCLInitOpMaker : public framework::OpProtoAndCheckerMaker {
public:
NCCLInitOpMaker(OpProto *proto, OpAttrChecker *op_checker)
: OpProtoAndCheckerMaker(proto, op_checker) {
AddInput(kParallelScopes, "The working place of parallel do.");
AddOutput("Communicator",
"Create Communicator for communicating between gpus");
AddAttr<std::vector<int>>("gpus", "(vector<int>) GPU id lists");
AddAttr<int>("dtype",
"(int, default 5 (FP32)) "
"Output data type")
.SetDefault(framework::proto::VarType::FP32);
AddComment(R"DOC(
NCCLInit Operator.
......@@ -78,7 +104,7 @@ class NCCLAllReduceOp : public framework::OperatorWithKernel {
ctx->HasInput("Communicator"),
" Input(Communicator) of AllReduce op input should not be NULL");
PADDLE_ENFORCE(ctx->HasOutput("Out"),
" Input(X) of AllReduce op input should not be NULL");
" Output(Out) of AllReduce op output should not be NULL");
auto x_dims = ctx->GetInputsDim("X");
......@@ -215,7 +241,9 @@ Bcast the tensors.
namespace ops = paddle::operators;
REGISTER_OPERATOR(ncclInit, ops::NCCLInitOp,
paddle::framework::EmptyGradOpMaker, ops::NCCLInitOpMaker);
paddle::framework::EmptyGradOpMaker, ops::NCCLInitOpMaker,
ops::NCCLInitOpVarTypeInference,
ops::NCCLInitOpShapeInference);
REGISTER_OP_WITHOUT_GRADIENT(ncclAllReduce, ops::NCCLAllReduceOp,
ops::NCCLAllReduceOpMaker);
......
......@@ -30,6 +30,7 @@ static constexpr char kOutputs[] = "outputs";
static constexpr char kParallelScopes[] = "parallel_scopes";
static constexpr char kParallelBlock[] = "sub_block";
static constexpr char kUseNCCL[] = "use_nccl";
using LoDTensor = framework::LoDTensor;
using SelectedRows = framework::SelectedRows;
......@@ -194,6 +195,8 @@ class ParallelDoOpProtoMaker : public framework::OpProtoAndCheckerMaker {
AddOutput(kOutputs, "").AsDuplicable();
AddOutput(kParallelScopes, "");
AddAttr<framework::BlockDesc *>(kParallelBlock, "");
AddAttr<bool>(kUseNCCL, "true if we use nccl on backward")
.SetDefault(false);
AddComment(R"DOC(
ParallelDo Operator.
)DOC");
......@@ -216,7 +219,6 @@ class ParallelDoGradOp : public framework::OperatorBase {
auto &sub_scopes = scope.FindVar(Input(kParallelScopes))
->Get<std::vector<framework::Scope *>>();
auto &places = scope.FindVar(Input(kPlaces))->Get<platform::PlaceList>();
// feed output@grad
......@@ -243,7 +245,24 @@ class ParallelDoGradOp : public framework::OperatorBase {
}
WaitOnPlaces(places);
AccumulateGrad(scope, place, sub_scopes, places);
// NCCL allreduce op will be added by backward,
// so no need to explicitly accumulate grad
if (!(Attr<bool>(kUseNCCL))) {
AccumulateGrad(scope, place, sub_scopes, places);
} else {
for (auto &place : places) {
PADDLE_ENFORCE(platform::is_gpu_place(place),
"NCCL only supports cuda place");
}
}
for (auto &s : Outputs(framework::GradVarName(kParameters))) {
if (s == "@EMPTY@") {
continue;
}
VLOG(3) << "Moving " << s;
CopyOrShare(*sub_scopes[0]->FindVar(s), place, scope.FindVar(s));
}
WaitOnPlaces(places);
}
void AccumulateGrad(const framework::Scope &scope,
......@@ -251,6 +270,9 @@ class ParallelDoGradOp : public framework::OperatorBase {
const std::vector<framework::Scope *> &sub_scopes,
const platform::PlaceList &places) const {
for (auto &s : Outputs(framework::GradVarName(kParameters))) {
if (s == "@EMPTY@") {
continue;
}
VLOG(3) << "Accumulating " << s;
if (s == framework::kEmptyVarName) continue;
std::string tmp_name;
......
......@@ -239,7 +239,8 @@ void BindVarDsec(py::module &m) {
.value("LOD_RANK_TABLE", proto::VarType::LOD_RANK_TABLE)
.value("LOD_TENSOR_ARRAY", proto::VarType::LOD_TENSOR_ARRAY)
.value("PLACE_LIST", proto::VarType::PLACE_LIST)
.value("READER", proto::VarType::READER);
.value("READER", proto::VarType::READER)
.value("NCCL_COM", proto::VarType::NCCL_COM);
}
void BindOpDesc(py::module &m) {
......
......@@ -199,12 +199,76 @@ def _remove_no_grad_branch_(op_descs, no_grad_set):
return op_descs
import proto.framework_pb2 as framework_pb2
def serialize_op_decs(op_desc):
protostr = op_desc.serialize_to_string()
proto = framework_pb2.OpDesc.FromString(str(protostr))
return proto.__str__()
def _callback_lookup_(op):
"""
Only used in _append_backward_ops_
Build and returns a callback function for certain op. For example
parallel_do: AllReduce
:param op:
:return: callback function
"""
if op.type == 'parallel_do' and op.attr('use_nccl'):
param_names = set(op.input('parameters'))
param_grad_names = [n + "@GRAD" for n in param_names]
class ParallelDoCallBack(object):
def __init__(self, param_grad_names, parallel_scopes_name):
self.has_inserted_nccl_init = False
self.param_grad_names = param_grad_names
self.parallel_scopes_name = parallel_scopes_name
def __call__(self, block, context):
if not self.has_inserted_nccl_init:
op_desc = _create_op_desc_(
"ncclInit",
{"parallel_scopes": self.parallel_scopes_name},
{"Communicator": ['nccl_com__do_not_change_']}, {})
block.program.global_block().desc.append_op().copy_from(
op_desc)
self.has_inserted_nccl_init = True
current_op_desc = context["__current_op_desc__"]
for o_param in current_op_desc.output_names():
for o_argu in current_op_desc.output(o_param):
if o_argu in self.param_grad_names:
allreduce_out_name = o_argu + "__nccl_all_reduce__"
op_desc = _create_op_desc_(
"ncclAllReduce", {
"X": [o_argu],
"Communicator":
['nccl_com__do_not_change_']
}, {"Out": [allreduce_out_name]},
{"reduction": "ncclSum"})
block.desc.append_op().copy_from(op_desc)
op_desc = _create_op_desc_(
"assign", {"X": [allreduce_out_name]},
{"Out": [o_argu]}, {})
block.desc.append_op().copy_from(op_desc)
return ParallelDoCallBack(param_grad_names,
op.output("parallel_scopes"))
else:
return None
def _append_backward_ops_(block,
ops,
target_block,
no_grad_dict,
grad_to_var,
callback=None):
callbacks=None):
"""
Create all grad ops, and insert them into given block
......@@ -220,14 +284,11 @@ def _append_backward_ops_(block,
val(str): corresponding forward variable name
callback(callable object): a callable object used to decorate new generated grad ops
"""
if callback is None:
def empty_callback(block, context):
pass
callback = empty_callback
elif not hasattr(callback, '__call__'):
raise ValueError("'callback' must be a callable object.")
if callbacks is not None:
assert (isinstance(callbacks, list))
for cb in callbacks:
if not hasattr(cb, '__call__'):
raise ValueError("'callback' must be a callable object.")
# grad_op_descs holds created grad_op, and will be appended to target_block
grad_op_descs = []
......@@ -238,8 +299,17 @@ def _append_backward_ops_(block,
if op.has_attr("sub_block"):
sub_block = program.block(op.block_attr("sub_block"))
grad_sub_block = program.create_block(parent_idx=sub_block.idx)
_append_backward_ops_(sub_block, sub_block.ops, grad_sub_block,
no_grad_dict, grad_to_var)
cb = _callback_lookup_(op)
if cb is not None:
if callbacks is None:
new_callbacks = [cb]
else:
new_callbacks = callbacks + [_callback_lookup_(op)]
_append_backward_ops_(sub_block, sub_block.ops, grad_sub_block,
no_grad_dict, grad_to_var, new_callbacks)
else:
_append_backward_ops_(sub_block, sub_block.ops, grad_sub_block,
no_grad_dict, grad_to_var, callbacks)
grad_sub_block_list.append(grad_sub_block.desc)
# Getting op's corresponding grad_op
......@@ -258,7 +328,11 @@ def _append_backward_ops_(block,
for op_desc in grad_op_descs:
new_op_desc = target_block.desc.append_op()
new_op_desc.copy_from(op_desc)
callback(block=target_block, context=grad_to_var)
grad_to_var["__current_op_desc__"] = new_op_desc
if callbacks is not None:
assert (isinstance(callbacks, list))
for cb in callbacks:
cb(block=target_block, context=grad_to_var)
def _append_backward_vars_(block, start_op_idx, grad_to_var, grad_info_map):
......@@ -296,6 +370,9 @@ def _append_backward_vars_(block, start_op_idx, grad_to_var, grad_info_map):
# infer_shape and infer_type
op_desc.infer_var_type(block.desc)
op_desc.infer_shape(block.desc)
# ncclInit dones't need to set data_type
if op_desc.type() == 'ncclInit':
continue
for arg in op_desc.output_arg_names():
if arg in new_vars:
_infer_var_data_type_(arg, block)
......@@ -335,7 +412,8 @@ def _get_stop_gradients_(program):
return no_grad_dict
def append_backward(loss, parameter_list=None, no_grad_set=None, callback=None):
def append_backward(loss, parameter_list=None, no_grad_set=None,
callbacks=None):
"""
Append backward part to main_program
......@@ -351,6 +429,8 @@ def append_backward(loss, parameter_list=None, no_grad_set=None, callback=None):
(list[(Variable,Variable)]): list of (parameter, gradient) pair.
"""
assert isinstance(loss, framework.Variable)
if callbacks is not None:
isinstance(callbacks, list)
program = loss.block.program
if no_grad_set is None:
......@@ -378,7 +458,7 @@ def append_backward(loss, parameter_list=None, no_grad_set=None, callback=None):
no_grad_dict[0].update(map(_append_grad_suffix_, block_no_grad_set))
_append_backward_ops_(root_block, op_path, root_block, no_grad_dict,
grad_to_var, callback)
grad_to_var, callbacks)
# Because calc_gradient may be called multiple times,
# we need rename the internal gradient variables so that they have
......
......@@ -490,7 +490,7 @@ class Operator(object):
'feed', 'fetch', 'save', 'load', 'recurrent',
'rnn_memory_helper_grad', 'conditional_block', 'while', 'send',
'recv', 'listen_and_serv', 'parallel_do', 'save_combine',
'load_combine'
'load_combine', 'ncclInit'
}
if type not in no_kernel_op_set:
self.desc.infer_var_type(self.block.desc)
......
......@@ -237,12 +237,13 @@ class ParallelDo(object):
ParallelDo class is used to create a ParallelDo.
"""
def __init__(self, places, name=None):
def __init__(self, places, use_nccl=False, name=None):
self.helper = LayerHelper("parallel_do", name=name)
self.inputs = []
self.places = places
self.outputs = []
self.status = StaticRNN.BEFORE_RNN_BLOCK
self.use_nccl = use_nccl
def do(self):
return BlockGuardWithCompletion(self)
......@@ -325,7 +326,8 @@ class ParallelDo(object):
},
outputs={'outputs': outputs,
'parallel_scopes': [step_scope]},
attrs={'sub_block': current_block})
attrs={'sub_block': current_block,
'use_nccl': self.use_nccl})
class BlockGuardWithCompletion(BlockGuard):
......
......@@ -225,7 +225,7 @@ class Optimizer(object):
`create_optimization_pass()` into one.
"""
params_grads = append_backward(loss, parameter_list, no_grad_set,
error_clip_callback)
[error_clip_callback])
params_grads = append_gradient_clip_ops(params_grads)
......
......@@ -43,7 +43,7 @@ prog_clip.block(0).var(hidden1.name).set_error_clip(
avg_cost_clip = prog_clip.block(0).var(avg_cost.name)
fluid.backward.append_backward(loss=avg_cost)
fluid.backward.append_backward(
loss=avg_cost_clip, callback=fluid.clip.error_clip_callback)
loss=avg_cost_clip, callbacks=[fluid.clip.error_clip_callback])
hidden1_grad = prog.block(0).var(hidden1.name + "@GRAD")
hidden1_grad_clip = prog_clip.block(0).var(hidden1.name + "@GRAD")
......
......@@ -67,12 +67,25 @@ class BaseParallelForTest(unittest.TestCase):
fetch=fetch,
place=gpu,
use_parallel=True)
result_gpu_nccl = self._run_test_impl_(
callback=callback,
feed=feed,
fetch=fetch,
place=gpu,
use_parallel=True,
use_nccl=True)
self._assert_same_(fetch, result_cpu, result_cpu_parallel,
result_gpu, result_gpu_parallel)
result_gpu, result_gpu_parallel, result_gpu_nccl)
else:
self._assert_same_(fetch, result_cpu, result_cpu_parallel)
def _run_test_impl_(self, callback, feed, fetch, place, use_parallel=False):
def _run_test_impl_(self,
callback,
feed,
fetch,
place,
use_parallel=False,
use_nccl=False):
"""
Run a single test, returns the fetch values
Args:
......@@ -96,7 +109,7 @@ class BaseParallelForTest(unittest.TestCase):
# Automatically insert parallel do if use_parallel = True
if use_parallel:
places = fluid.layers.get_places()
pd = fluid.layers.ParallelDo(places)
pd = fluid.layers.ParallelDo(places, use_nccl=use_nccl)
data = next(generator)
if isinstance(data, fluid.Variable):
......@@ -137,7 +150,9 @@ class BaseParallelForTest(unittest.TestCase):
"""
def _impl_(a, b, fetch_id, item_id):
item_str = ['CPU', 'ParallelCPU', 'GPU', 'ParallelGPU']
item_str = [
'CPU', 'ParallelCPU', 'GPU', 'ParallelGPU', 'ParallelGPUNCCL'
]
flag = numpy.allclose(a, b, rtol=0.1, atol=1e-3)
self.assertTrue(flag,
"The {0} are different in {1}, {2} vs {3}".format(
......@@ -198,5 +213,5 @@ class ParallelOpTestMultipleInput(BaseParallelForTest):
fetch=['fc1.w@GRAD', 'fc2.w@GRAD', 'fc3.w@GRAD'])
#if __name__ == '__main__':
# unittest.main()
if __name__ == '__main__':
unittest.main()
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册