提交 624e3e52 编写于 作者: T tensor-tang

add MKL Packed RecurrentLayer

上级 16fd9f18
......@@ -34,6 +34,16 @@ else()
message(STATUS "Compile with MKLDNNLayers and MKLDNNActivations")
endif()
if(NOT WITH_MKLML)
file(GLOB_RECURSE MKL_HEADER RELATIVE "${CMAKE_CURRENT_SOURCE_DIR}" "MKLPacked*.h")
file(GLOB_RECURSE MKL_SOURCES RELATIVE "${CMAKE_CURRENT_SOURCE_DIR}" "MKLPacked*.cpp")
list(REMOVE_ITEM GSERVER_HEADER ${MKL_HEADER})
list(REMOVE_ITEM GSERVER_SOURCES ${MKL_SOURCES})
message(STATUS "Skip compiling with MKLPackedLayers")
else()
message(STATUS "Compile with MKLPackedLayers")
endif()
if(NOT WITH_GPU)
list(REMOVE_ITEM GSERVER_HEADER
layers/CudnnConvBaseLayer.h
......
/* Copyright (c) 2017 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include "paddle/math/MathFunctions.h"
#include "paddle/math/Matrix.h"
namespace paddle {
class MKLPackedGemm {
protected:
real* weightPacked_;
real* weightTPacked_;
size_t weightHeight_;
size_t weightWidth_;
public:
MKLPackedGemm(MatrixPtr weight) {
weightHeight_ = weight->getHeight();
weightWidth_ = weight->getWidth();
weightPacked_ =
cblas_sgemm_alloc(CblasBMatrix, 1, weightWidth_, weightHeight_);
weightTPacked_ =
cblas_sgemm_alloc(CblasBMatrix, 1, weightWidth_, weightHeight_);
cblas_sgemm_pack(CblasRowMajor,
CblasBMatrix,
CblasNoTrans,
1,
weightWidth_,
weightHeight_,
1.0,
weight->getData(),
weightWidth_,
weightPacked_);
cblas_sgemm_pack(CblasRowMajor,
CblasBMatrix,
CblasTrans,
1,
weightWidth_,
weightHeight_,
1.0,
weight->getData(),
weightWidth_,
weightTPacked_);
}
void compute(MatrixPtr batch2, MatrixPtr batch1, bool transW = false) {
if (transW) {
cblas_sgemm_compute(CblasRowMajor,
CblasNoTrans,
CblasPacked,
batch2->getHeight(),
weightWidth_,
weightHeight_,
batch1->getData(),
weightHeight_,
weightTPacked_,
weightWidth_,
1,
batch2->getData(),
weightWidth_);
} else {
cblas_sgemm_compute(CblasRowMajor,
CblasNoTrans,
CblasPacked,
batch2->getHeight(),
weightWidth_,
weightHeight_,
batch1->getData(),
weightHeight_,
weightPacked_,
weightWidth_,
1,
batch2->getData(),
weightWidth_);
}
}
~MKLPackedGemm() {
cblas_sgemm_free(weightPacked_);
cblas_sgemm_free(weightTPacked_);
}
};
} // namespace paddle
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "MKLPackedRecurrentLayer.h"
namespace paddle {
REGISTER_LAYER(mkl_packed_recurrent, MKLPackedRecurrentLayer);
bool MKLPackedRecurrentLayer::init(const LayerMap& layerMap,
const ParameterMap& parameterMap) {
if (!Layer::init(layerMap, parameterMap)) return false;
CHECK_EQ(1U, inputLayers_.size());
CHECK_EQ(1U, parameters_.size());
CHECK_EQ(getSize() * getSize(), parameters_[0]->getSize());
weight_.reset(new Weight(getSize(), getSize(), parameters_[0]));
if (biasParameter_.get() != NULL) {
bias_.reset(new Weight(1, getSize(), biasParameter_));
}
reversed_ = config_.reversed();
sgemm_packed_.reset(new MKLPackedGemm(weight_->getW()));
return true;
}
void MKLPackedRecurrentLayer::resetState() {
CHECK(!reversed_) << "state is not allowed for reversed recurrent layer";
Matrix::resizeOrCreate(
prevOutput_, 1, getSize(), /* trans= */ false, useGpu_);
prevOutput_->zeroMem();
}
void MKLPackedRecurrentLayer::setState(LayerStatePtr state) {
CHECK(state->value.size() == 1) << "one matrix is expected for RNN state";
prevOutput_->copyFrom(*(state->value[0]));
}
LayerStatePtr MKLPackedRecurrentLayer::getState() {
LayerStatePtr res = std::make_shared<LayerState>();
res->value.push_back(prevOutput_->clone(0, 0, useGpu_));
res->value[0]->copyFrom(*prevOutput_);
return res;
}
void MKLPackedRecurrentLayer::forward(PassType passType) {
REGISTER_TIMER_INFO("RecurrentFwTimer", getName().c_str());
Layer::forward(passType);
const Argument& input = getInput(0);
CHECK(input.sequenceStartPositions);
int batchSize = input.getBatchSize();
size_t numSequences = input.getNumSequences();
resetOutput(batchSize, getSize());
CHECK_EQ(getSize(), input.value->getWidth());
const int* starts = input.sequenceStartPositions->getData(false);
CHECK_EQ(starts[numSequences], batchSize);
output_.value->assign(*input.value);
if (bias_) {
output_.value->addBias(*bias_->getW(), 1);
}
if (!FLAGS_rnn_use_batch) {
forwardSequence(batchSize, numSequences, starts);
} else {
forwardBatch(batchSize, numSequences, starts);
}
}
void MKLPackedRecurrentLayer::forwardSequence(int batchSize,
size_t numSequences,
const int* starts) {
REGISTER_TIMER_INFO("RecurrentFwSequence", getName().c_str());
frameOutput_.reserve(batchSize);
for (int i = frameOutput_.size(); i < batchSize; ++i) {
Argument arg;
arg.value = Matrix::create(nullptr,
/* height= */ 1,
getSize(),
/* trans= */ false,
useGpu_);
arg.grad = Matrix::create(nullptr,
/* height= */ 1,
getSize(),
/* trans= */ false,
useGpu_);
frameOutput_.push_back(arg);
}
for (int i = 0; i < batchSize; ++i) {
frameOutput_[i].value->setData(output_.value->getData() + i * getSize());
}
for (size_t i = 0; i < numSequences; ++i) {
forwardOneSequence(starts[i], starts[i + 1] - starts[i]);
}
}
void MKLPackedRecurrentLayer::forwardOneSequence(int start, int length) {
if (!reversed_) {
if (prevOutput_) {
frameOutput_[start].value->mul(*prevOutput_, *weight_->getW(), 1, 1);
}
activation_->forward(frameOutput_[start]).check();
for (int i = 1; i < length; ++i) {
frameOutput_[start + i].value->mul(
*frameOutput_[start + i - 1].value, *weight_->getW(), 1, 1);
activation_->forward(frameOutput_[start + i]).check();
}
if (prevOutput_) {
prevOutput_->assign(*frameOutput_[start + length - 1].value);
}
} else {
activation_->forward(frameOutput_[start + length - 1]).check();
for (int i = length - 2; i >= 0; --i) {
frameOutput_[start + i].value->mul(
*frameOutput_[start + i + 1].value, *weight_->getW(), 1, 1);
activation_->forward(frameOutput_[start + i]).check();
}
}
}
void MKLPackedRecurrentLayer::backward(const UpdateCallback& callback) {
REGISTER_TIMER_INFO("RecurrentBwTimer", getName().c_str());
const Argument& input = getInput(0);
CHECK(input.sequenceStartPositions);
int batchSize = input.getBatchSize();
const int* starts = input.sequenceStartPositions->getData(false);
size_t numSequences = input.getNumSequences();
if (!FLAGS_rnn_use_batch) {
backwardSequence(batchSize, numSequences, starts);
} else {
backwardBatch(batchSize, numSequences, starts);
}
if (input.grad) {
input.grad->add(*output_.grad);
}
if (bias_ && bias_->getWGrad()) {
bias_->getWGrad()->collectBias(*output_.grad, 1);
bias_->getParameterPtr()->incUpdate(callback);
}
weight_->getParameterPtr()->incUpdate(callback);
sgemm_packed_.reset(new MKLPackedGemm(weight_->getW()));
}
void MKLPackedRecurrentLayer::backwardSequence(int batchSize,
size_t numSequences,
const int* starts) {
REGISTER_TIMER_INFO("RecurrentBwSequence", getName().c_str());
for (int i = 0; i < batchSize; ++i) {
frameOutput_[i].grad->setData(output_.grad->getData() + i * getSize());
}
for (size_t i = 0; i < numSequences; ++i) {
backwardOneSequence(starts[i], starts[i + 1] - starts[i]);
}
}
void MKLPackedRecurrentLayer::backwardOneSequence(int start, int length) {
MatrixPtr weightT = weight_->getW()->getTranspose();
if (!reversed_) {
for (int i = length - 1; i > 0; --i) {
activation_->backward(frameOutput_[start + i]).check();
frameOutput_[start + i - 1].grad->mul(
*frameOutput_[start + i].grad, *weightT, 1, 1);
}
activation_->backward(frameOutput_[start]).check();
if (weight_->getWGrad()) {
weight_->getWGrad()->mul(
*output_.value->subMatrix(start, length - 1)->getTranspose(),
*output_.grad->subMatrix(start + 1, length - 1),
1,
1);
}
} else {
for (int i = 0; i < length - 1; ++i) {
activation_->backward(frameOutput_[start + i]).check();
frameOutput_[start + i + 1].grad->mul(
*frameOutput_[start + i].grad, *weightT, 1, 1);
}
activation_->backward(frameOutput_[start + length - 1]).check();
if (weight_->getWGrad()) {
weight_->getWGrad()->mul(
*output_.value->subMatrix(start + 1, length - 1)->getTranspose(),
*output_.grad->subMatrix(start, length - 1),
1,
1);
}
}
}
void MKLPackedRecurrentLayer::forwardBatch(int batchSize,
size_t numSequences,
const int* starts) {
if (!batchValue_) {
batchValue_.reset(new SequenceToBatch(useGpu_));
}
batchValue_->resizeOrCreateBatch(batchSize, numSequences, starts, reversed_);
batchValue_->copyFromSeq(*output_.value);
{
REGISTER_TIMER_INFO("RecurrentFwBatch", getName().c_str());
/* forward one batch */
for (size_t n = 0; n < batchValue_->getNumBatch(); n++) {
MatrixPtr batch2 = batchValue_->getBatchValue(n);
if (n != 0) {
MatrixPtr batch1 =
batchValue_->getBatchValue(n - 1, batch2->getHeight());
// batch2->mul(*batch1, *weight_->getW(), 1, 1);
sgemm_packed_->compute(batch2, batch1);
}
#pragma omp parallel for collapse(2)
for (size_t i = 0; i < batch2->getHeight(); i++) {
for (size_t j = 0; j < batch2->getWidth(); j++) {
*(batch2->getData() + i * batch2->getWidth() + j) =
*(batch2->getData() + i * batch2->getWidth() + j) > 0
? *(batch2->getData() + i * batch2->getWidth() + j)
: 0;
}
}
}
}
batchValue_->copyBackSeq(*output_.value);
}
void MKLPackedRecurrentLayer::backwardBatch(int batchSize,
size_t numSequences,
const int* starts) {
if (!batchGrad_) {
batchGrad_.reset(new SequenceToBatch(useGpu_));
}
batchGrad_->shareIndexWith(*batchValue_);
size_t numBatch = batchGrad_->getNumBatch();
bool backwardByBatch = numBatch < numSequences;
batchGrad_->copyFromSeq(*output_.grad);
{
REGISTER_TIMER_INFO("RecurrentBwData", getName().c_str());
/* backward one batch */
for (int n = (int)numBatch - 1; n >= 0; n--) {
MatrixPtr batch2 = batchGrad_->getBatchValue(n);
MatrixPtr batch1 = batchValue_->getBatchValue(n, batch2->getHeight());
Argument arg;
arg.value = batch1;
arg.grad = batch2;
activation_->backward(arg).check();
if (n != 0) {
batch1 = batchGrad_->getBatchValue(n - 1, batch2->getHeight());
// batch1->mul(*batch2, *weightT, 1, 1);
sgemm_packed_->compute(batch1, batch2, true);
}
if (backwardByBatch && weight_->getWGrad()) {
if (n != 0) {
/* backward weight */
batch1 = batchValue_->getBatchValue(n - 1, batch2->getHeight());
weight_->getWGrad()->mul(*batch1->getTranspose(), *batch2, 1, 1);
}
}
}
}
batchGrad_->copyBackSeq(*output_.grad);
if (!backwardByBatch && weight_->getWGrad()) {
REGISTER_TIMER_INFO("RecurrentBwWeight", getName().c_str());
for (size_t seq = 0; seq < numSequences; ++seq) {
int len = starts[seq + 1] - starts[seq];
if (!reversed_) {
weight_->getWGrad()->mul(
*output_.value->subMatrix(starts[seq], len - 1)->getTranspose(),
*output_.grad->subMatrix(starts[seq] + 1, len - 1),
1,
1);
} else {
weight_->getWGrad()->mul(
*output_.value->subMatrix(starts[seq] + 1, len - 1)->getTranspose(),
*output_.grad->subMatrix(starts[seq], len - 1),
1,
1);
}
}
}
}
} // namespace paddle
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include <gflags/gflags.h>
#include "Layer.h"
#include "MKLPackedGemm.h"
#include "SequenceToBatch.h"
#include "paddle/utils/Stat.h"
DECLARE_bool(rnn_use_batch);
namespace paddle {
/**
* @brief MKLPackedRecurrentLayer takes 1 input layer. The output size is the
* same with
* input layer.
* For each sequence [start, end] it performs the following computation:
* \f[
* out_{i} = act(in_{i}) \ \ \text{for} \ i = start \\
* out_{i} = act(in_{i} + out_{i-1} * W) \ \ \text{for} \ start < i <= end
*
* \f]
* If reversed is true, the order is reversed:
* \f[
* out_{i} = act(in_{i}) \ \ \text{for} \ i = end \\
* out_{i} = act(in_{i} + out_{i+1} * W) \ \ \text{for} \ start <= i < end
* \f]
* There are two methods to calculate rnn. One way is to compute rnn one
* sequence by one sequence. The other way is to reorganize the input
* into batches, then compute rnn one batch by one batch. Users can select
* them by rnn_use_batch flag.
*/
class MKLPackedRecurrentLayer : public Layer {
public:
explicit MKLPackedRecurrentLayer(const LayerConfig& config) : Layer(config) {}
bool init(const LayerMap& layerMap,
const ParameterMap& parameterMap) override;
void forward(PassType passType) override;
void backward(const UpdateCallback& callback) override;
void resetState() override;
void setState(LayerStatePtr state) override;
LayerStatePtr getState() override;
protected:
/**
* @brief If user do not set --rnn_use_batch=true, it will
* compute rnn forward one sequence by one sequence in default.
* @param batchSize Total words number of all samples in this batch.
* @param numSequences The sample number.
* @param starts Each start position of each samples.
*/
void forwardSequence(int batchSize, size_t numSequences, const int* starts);
/**
* @brief Compute rnn forward by one sequence.
* @param start The start position of this sequence (or sample).
* @param length The length of this sequence (or sample), namely the words
* number of this sequence.
*/
void forwardOneSequence(int start, int length);
/**
* @brief Compute rnn backward one sequence by onesequence.
* @param batchSize Total words number of all samples in this batch.
* @param numSequences The sample number.
* @param starts Each start position of each samples.
*/
void backwardSequence(int batchSize, size_t numSequences, const int* starts);
/**
* @brief Compute rnn backward by one sequence.
* @param start The start position of this sequence (or sample).
* @param length The length of this sequence (or sample), namely the words
* number of this sequence.
*/
void backwardOneSequence(int start, int length);
/**
* @brief Reorganize input into batches and compute rnn forward batch
* by batch. It will convert batch shape to sequence after finishing forward.
* The batch info can refer to SequenceToBatch class.
* @param batchSize Total words number of all samples in this batch.
* @param numSequences The sample number.
* @param starts Each start position of each samples.
*/
void forwardBatch(int batchSize, size_t numSequences, const int* starts);
/**
* @brief Reorganize input into batches and compute rnn forward batch
* by batch.
* @param batchSize Total words number of all samples in this batch.
* @param numSequences The sample number.
* @param starts Each start position of each samples.
*/
void backwardBatch(int batchSize, size_t numSequences, const int* starts);
protected:
std::unique_ptr<Weight> weight_;
std::unique_ptr<Weight> bias_;
/// frameOutput_[i] is used to hold the i-th sample of output_
std::vector<Argument> frameOutput_;
MatrixPtr prevOutput_;
/// Whether compute rnn by reverse.
bool reversed_;
/// If compute batch by batch, batchValue_ will be used to save the
/// reorganized input value.
std::unique_ptr<SequenceToBatch> batchValue_;
/// If compute batch by batch, batchGrad_ will be used to save the
/// gradient with respect to reorganized input value.
std::unique_ptr<SequenceToBatch> batchGrad_;
std::unique_ptr<MKLPackedGemm> sgemm_packed_;
};
}
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册