Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleDetection
提交
6164b898
P
PaddleDetection
项目概览
PaddlePaddle
/
PaddleDetection
大约 1 年 前同步成功
通知
695
Star
11112
Fork
2696
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
184
列表
看板
标记
里程碑
合并请求
40
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
184
Issue
184
列表
看板
标记
里程碑
合并请求
40
合并请求
40
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
6164b898
编写于
9月 29, 2017
作者:
Y
Yu Yang
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Fix CI
上级
762a99cc
变更
3
隐藏空白更改
内联
并排
Showing
3 changed file
with
4 addition
and
50 deletion
+4
-50
python/paddle/v2/framework/tests/test_gradient_checker.py
python/paddle/v2/framework/tests/test_gradient_checker.py
+0
-46
python/paddle/v2/framework/tests/test_net.py
python/paddle/v2/framework/tests/test_net.py
+2
-2
python/paddle/v2/framework/tests/test_operator.py
python/paddle/v2/framework/tests/test_operator.py
+2
-2
未找到文件。
python/paddle/v2/framework/tests/test_gradient_checker.py
已删除
100644 → 0
浏览文件 @
762a99cc
import
unittest
import
numpy
as
np
import
paddle.v2.framework.core
as
core
from
op_test
import
get_numeric_gradient
from
op_test
import
create_op
class
GetNumericGradientTest
(
unittest
.
TestCase
):
def
test_add_op
(
self
):
x
=
np
.
random
.
random
((
10
,
1
)).
astype
(
"float32"
)
y
=
np
.
random
.
random
((
10
,
1
)).
astype
(
"float32"
)
z
=
x
+
y
scope
=
core
.
Scope
()
add_op
=
create_op
(
scope
,
"add"
,
{
'X'
:
x
,
'Y'
:
y
},
{
'Out'
:
z
},
dict
())
arr
=
get_numeric_gradient
(
scope
,
add_op
,
{
'X'
:
x
,
'Y'
:
y
},
'X'
,
[
'Out'
])
self
.
assertAlmostEqual
(
arr
.
mean
(),
1.0
,
delta
=
1e-4
)
def
test_softmax_op
(
self
):
def
stable_softmax
(
x
):
"""Compute the softmax of vector x in a numerically stable way."""
shiftx
=
x
-
np
.
max
(
x
)
exps
=
np
.
exp
(
shiftx
)
return
exps
/
np
.
sum
(
exps
)
def
label_softmax_grad
(
Y
,
dY
):
dX
=
Y
*
0.0
for
i
in
range
(
Y
.
shape
[
0
]):
d
=
np
.
dot
(
Y
[
i
,
:],
dY
[
i
,
:])
dX
[
i
,
:]
=
Y
[
i
,
:]
*
(
dY
[
i
,
:]
-
d
)
return
dX
X
=
np
.
random
.
random
((
2
,
2
)).
astype
(
"float32"
)
Y
=
np
.
apply_along_axis
(
stable_softmax
,
1
,
X
)
dY
=
np
.
ones
(
Y
.
shape
)
dX
=
label_softmax_grad
(
Y
,
dY
)
scope
=
core
.
Scope
()
softmax_op
=
create_op
(
scope
,
"softmax"
,
{
"X"
:
X
},
{
"Y"
:
Y
},
dict
())
arr
=
get_numeric_gradient
(
scope
,
softmax_op
,
{
"X"
:
X
},
"X"
,
"Y"
)
np
.
testing
.
assert_almost_equal
(
arr
,
dX
,
decimal
=
1e-2
)
if
__name__
==
"__main__"
:
unittest
.
main
()
python/paddle/v2/framework/tests/test_net.py
浏览文件 @
6164b898
...
...
@@ -15,7 +15,7 @@ def fc(X, W, Y):
class
TestNet
(
unittest
.
TestCase
):
def
test_net_all
(
self
):
net
=
core
.
Net
.
create
()
op1
=
Operator
(
"
add"
,
X
=
"X"
,
Y
=
"Y"
,
Out
=
"Out"
)
op1
=
Operator
(
"
sum"
,
X
=
[
"X"
,
"Y"
]
,
Out
=
"Out"
)
net
.
append_op
(
op1
)
net2
=
core
.
Net
.
create
()
...
...
@@ -26,7 +26,7 @@ class TestNet(unittest.TestCase):
expected
=
'''
Op(plain_net), inputs:{all[W, X, Y]}, outputs:{all[Out, fc.out, pre_activation]}.
Op(
add), inputs:{X[X], Y[
Y]}, outputs:{Out[Out]}.
Op(
sum), inputs:{X[X,
Y]}, outputs:{Out[Out]}.
Op(plain_net), inputs:{all[W, X]}, outputs:{all[fc.out, pre_activation]}.
Op(plain_net), inputs:{all[W, X]}, outputs:{all[fc.out, pre_activation]}.
Op(mul), inputs:{X[X], Y[W]}, outputs:{Out[pre_activation]}.
...
...
python/paddle/v2/framework/tests/test_operator.py
浏览文件 @
6164b898
...
...
@@ -193,10 +193,10 @@ class TestOpDescCreationMethod(unittest.TestCase):
class
TestOpCreations
(
unittest
.
TestCase
):
def
test_all
(
self
):
add_op
=
op
.
Operator
(
"
add"
,
X
=
"a"
,
Y
=
"b"
,
Out
=
"z"
)
add_op
=
op
.
Operator
(
"
sum"
,
X
=
[
"a"
,
"b"
]
,
Out
=
"z"
)
self
.
assertIsNotNone
(
add_op
)
# Invoke C++ DebugString()
self
.
assertEqual
(
'Op(
add), inputs:{X[a], Y[
b]}, outputs:{Out[z]}.'
,
self
.
assertEqual
(
'Op(
sum), inputs:{X[a,
b]}, outputs:{Out[z]}.'
,
str
(
add_op
))
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录