Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleDetection
提交
6125a588
P
PaddleDetection
项目概览
PaddlePaddle
/
PaddleDetection
大约 1 年 前同步成功
通知
695
Star
11112
Fork
2696
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
184
列表
看板
标记
里程碑
合并请求
40
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
184
Issue
184
列表
看板
标记
里程碑
合并请求
40
合并请求
40
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
6125a588
编写于
6月 23, 2019
作者:
Y
Yibing Liu
提交者:
GitHub
6月 23, 2019
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Fix ema's example & fp16 update (#18273) (#18275)
test=release/1.5
上级
575bc572
变更
1
隐藏空白更改
内联
并排
Showing
1 changed file
with
63 addition
and
33 deletion
+63
-33
python/paddle/fluid/optimizer.py
python/paddle/fluid/optimizer.py
+63
-33
未找到文件。
python/paddle/fluid/optimizer.py
浏览文件 @
6125a588
...
...
@@ -2458,36 +2458,50 @@ class ExponentialMovingAverage(object):
Examples:
.. code-block:: python
import paddle.fluid as fluid
data = fluid.layers.data(name='x', shape=[5], dtype='float32')
hidden = fluid.layers.fc(input=data, size=10)
cost = fluid.layers.mean(hidden)
optimizer = fluid.optimizer.Adam(learning_rate=0.001)
optimizer.minimize(cost)
global_steps = fluid.layers.learning_rate_scheduler._decay_step_counter()
ema = fluid.optimizer.ExponentialMovingAverage(0.999, thres_steps=global_steps)
ema.update()
# pseudo code
for pass_id in range(args.pass_num):
for data in train_reader():
exe.run(fluid.default_main_program()...)
# usage 1
with ema.apply(exe):
for data in test_reader():
exe.run(inference_program...)
# usage 2
with ema.apply(exe, need_restore=False):
for data in test_reader():
exe.run(inference_program...)
...
ema.restore(exe)
import numpy
import paddle
import paddle.fluid as fluid
data = fluid.layers.data(name='x', shape=[5], dtype='float32')
hidden = fluid.layers.fc(input=data, size=10)
cost = fluid.layers.mean(hidden)
test_program = fluid.default_main_program().clone(for_test=True)
optimizer = fluid.optimizer.Adam(learning_rate=0.001)
optimizer.minimize(cost)
global_steps = fluid.layers.learning_rate_scheduler._decay_step_counter()
ema = fluid.optimizer.ExponentialMovingAverage(0.999, thres_steps=global_steps)
ema.update()
place = fluid.CPUPlace()
exe = fluid.Executor(place)
exe.run(fluid.default_startup_program())
for pass_id in range(3):
for batch_id in range(6):
data = numpy.random.random(size=(10, 5)).astype('float32')
exe.run(program=fluid.default_main_program(),
feed={'x': data},
fetch_list=[cost.name])
# usage 1
with ema.apply(exe):
data = numpy.random.random(size=(10, 5)).astype('float32')
exe.run(program=test_program,
feed={'x': data},
fetch_list=[hidden.name])
# usage 2
with ema.apply(exe, need_restore=False):
data = numpy.random.random(size=(10, 5)).astype('float32')
exe.run(program=test_program,
feed={'x': data},
fetch_list=[hidden.name])
ema.restore(exe)
"""
def
__init__
(
self
,
decay
=
0.999
,
thres_steps
=
None
,
name
=
None
):
...
...
@@ -2576,13 +2590,29 @@ class ExponentialMovingAverage(object):
Update Exponential Moving Average. Should only call this method in
train program.
"""
param_master_emas
=
[]
for
param
,
tmp
in
self
.
_params_tmps
:
with
param
.
block
.
program
.
_optimized_guard
(
[
param
,
tmp
]),
name_scope
(
'moving_average'
):
param_ema
=
self
.
_ema_vars
[
param
.
name
]
ema_t
=
param_ema
*
self
.
_decay_var
+
param
*
(
1
-
self
.
_decay_var
)
layers
.
assign
(
input
=
ema_t
,
output
=
param_ema
)
if
self
.
_ema_vars
.
has_key
(
param
.
name
+
'.master'
):
master_ema
=
self
.
_ema_vars
[
param
.
name
+
'.master'
]
param_master_emas
.
append
([
param_ema
,
master_ema
])
else
:
ema_t
=
param_ema
*
self
.
_decay_var
+
param
*
(
1
-
self
.
_decay_var
)
layers
.
assign
(
input
=
ema_t
,
output
=
param_ema
)
# for fp16 params
for
param_ema
,
master_ema
in
param_master_emas
:
default_main_program
().
global_block
().
append_op
(
type
=
"cast"
,
inputs
=
{
"X"
:
master_ema
},
outputs
=
{
"Out"
:
param_ema
},
attrs
=
{
"in_dtype"
:
master_ema
.
dtype
,
"out_dtype"
:
param_ema
.
dtype
})
@
signature_safe_contextmanager
def
apply
(
self
,
executor
,
need_restore
=
True
):
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录