Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleDetection
提交
611ee68b
P
PaddleDetection
项目概览
PaddlePaddle
/
PaddleDetection
大约 1 年 前同步成功
通知
694
Star
11112
Fork
2696
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
184
列表
看板
标记
里程碑
合并请求
40
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
184
Issue
184
列表
看板
标记
里程碑
合并请求
40
合并请求
40
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
体验新版 GitCode,发现更多精彩内容 >>
提交
611ee68b
编写于
10月 23, 2017
作者:
P
peterzhang2029
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
add bilinear tensor product op
上级
154e1d04
变更
4
隐藏空白更改
内联
并排
Showing
4 changed file
with
383 addition
and
0 deletion
+383
-0
paddle/operators/bilinear_tensor_product_op.cc
paddle/operators/bilinear_tensor_product_op.cc
+153
-0
paddle/operators/bilinear_tensor_product_op.cu
paddle/operators/bilinear_tensor_product_op.cu
+24
-0
paddle/operators/bilinear_tensor_product_op.h
paddle/operators/bilinear_tensor_product_op.h
+176
-0
python/paddle/v2/framework/tests/test_bilinear_tensor_product_op.py
...dle/v2/framework/tests/test_bilinear_tensor_product_op.py
+30
-0
未找到文件。
paddle/operators/bilinear_tensor_product_op.cc
0 → 100644
浏览文件 @
611ee68b
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/operators/bilinear_tensor_product_op.h"
namespace
paddle
{
namespace
operators
{
using
framework
::
Tensor
;
class
BilinearTensorProductOp
:
public
framework
::
OperatorWithKernel
{
public:
using
framework
::
OperatorWithKernel
::
OperatorWithKernel
;
protected:
void
InferShape
(
framework
::
InferShapeContext
*
ctx
)
const
override
{
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"X"
),
"Input(X) should not be null."
);
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"Y"
),
"Input(Y) should not be null."
);
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"Weight"
),
"Input(Weight) should not be null."
);
PADDLE_ENFORCE
(
ctx
->
HasOutput
(
"Out"
),
"Output(Out) should not be null."
);
auto
x_dims
=
ctx
->
GetInputDim
(
"X"
);
auto
y_dims
=
ctx
->
GetInputDim
(
"Y"
);
auto
weight_dims
=
ctx
->
GetInputDim
(
"Weight"
);
PADDLE_ENFORCE_EQ
(
x_dims
.
size
(),
1
,
"The input X must be a vector."
);
PADDLE_ENFORCE_EQ
(
y_dims
.
size
(),
1
,
"The input Y must be a vector."
);
PADDLE_ENFORCE_EQ
(
weight_dims
.
size
(),
3
,
"The input Weight must be a 3D tensor."
);
PADDLE_ENFORCE_GT
(
weight_dims
[
0
],
0
,
"The first dimension of Weight must be larger than 0."
);
PADDLE_ENFORCE_GT
(
weight_dims
[
1
],
0
,
"The second dimension of Weight must be larger than 0."
);
PADDLE_ENFORCE_GT
(
weight_dims
[
2
],
0
,
"The third dimension of Weight must be larger than 0."
);
PADDLE_ENFORCE_EQ
(
x_dims
[
0
],
weight_dims
[
1
],
"The dimension of X must be equal with the second "
"dimension of the Weight."
);
PADDLE_ENFORCE_EQ
(
y_dims
[
0
],
weight_dims
[
2
],
"The dimension of Y must be equal with the third "
"dimension of the Weight."
);
auto
bias
=
Input
(
"Bias"
);
if
(
bias
!=
framework
::
kEmptyVarName
)
{
auto
bias_dims
=
ctx
->
GetInputDim
(
"Bias"
);
PADDLE_ENFORCE_EQ
(
bias_dims
.
size
(),
1
,
"The input Bias must be a vector."
);
PADDLE_ENFORCE_EQ
(
bias_dims
[
0
],
weight_dims
[
0
],
"The dimension of Bias must be equal with the first "
"dimension of the Weight."
);
}
ctx
->
SetOutputDim
(
"Out"
,
{
weight_dims
[
0
]});
}
};
class
BilinearTensorProductOpMaker
:
public
framework
::
OpProtoAndCheckerMaker
{
public:
BilinearTensorProductOpMaker
(
framework
::
OpProto
*
proto
,
framework
::
OpAttrChecker
*
op_checker
)
:
OpProtoAndCheckerMaker
(
proto
,
op_checker
)
{
AddInput
(
"X"
,
"The first input of tensor op"
);
AddInput
(
"Y"
,
"The second input of tensor op"
);
AddInput
(
"Weight"
,
"The input weight of tensor op"
);
AddInput
(
"Bias"
,
"The input bias of tensor op"
);
AddOutput
(
"Out"
,
"The output of tensor op"
);
AddComment
(
R"DOC(
Bilinear Tensor Product operator.
Given input X and Y, a 3D tensor weight, and bias. Each entry of the output is
computed by one slice i = 1, . . . , k of the tensor: Out_i = X*W_i*Y + Bias_i .
The equation of this operator is:
Out = \sum_{i} X*W_i*Y + Bias
)DOC"
);
}
};
class
BilinearTensorProductOpGrad
:
public
framework
::
OperatorWithKernel
{
public:
using
framework
::
OperatorWithKernel
::
OperatorWithKernel
;
protected:
void
InferShape
(
framework
::
InferShapeContext
*
ctx
)
const
override
{
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"X"
),
"Input(X) should not be null"
);
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"Y"
),
"Input(Y) should not be null"
);
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"Weight"
),
"Input(Weight) should not be null"
);
PADDLE_ENFORCE
(
ctx
->
HasInput
(
framework
::
GradVarName
(
"Out"
)),
"Input (Out@GRAD) should not be null"
);
auto
x_dims
=
ctx
->
GetInputDim
(
"X"
);
auto
y_dims
=
ctx
->
GetInputDim
(
"Y"
);
auto
weight_dims
=
ctx
->
GetInputDim
(
"Weight"
);
auto
out_dims
=
ctx
->
GetInputDim
(
framework
::
GradVarName
(
"Out"
));
PADDLE_ENFORCE_EQ
(
out_dims
.
size
(),
1
,
"The Out@GRAD must be a vector."
);
PADDLE_ENFORCE_EQ
(
weight_dims
[
0
],
out_dims
[
0
],
"The dimension of Out@GRAD must be equal with the third dimension of "
"the Weight."
);
auto
bias
=
Input
(
"Bias"
);
if
(
bias
!=
framework
::
kEmptyVarName
)
{
auto
bias_dims
=
ctx
->
GetInputDim
(
"Bias"
);
PADDLE_ENFORCE_EQ
(
bias_dims
.
size
(),
1
,
"Input Bias must be a vector."
);
PADDLE_ENFORCE_EQ
(
bias_dims
[
0
],
out_dims
[
0
],
"The dimension of Bias must be equal with the Out@GRAD "
);
auto
bias_grad_name
=
framework
::
GradVarName
(
"Bias"
);
if
(
ctx
->
HasOutput
(
bias_grad_name
))
ctx
->
SetOutputDim
(
bias_grad_name
,
bias_dims
);
}
auto
x_grad_name
=
framework
::
GradVarName
(
"X"
);
auto
y_grad_name
=
framework
::
GradVarName
(
"Y"
);
auto
weight_grad_name
=
framework
::
GradVarName
(
"Weight"
);
if
(
ctx
->
HasOutput
(
x_grad_name
))
{
ctx
->
SetOutputDim
(
x_grad_name
,
x_dims
);
}
if
(
ctx
->
HasOutput
(
y_grad_name
))
{
ctx
->
SetOutputDim
(
y_grad_name
,
y_dims
);
}
if
(
ctx
->
HasOutput
(
weight_grad_name
))
{
ctx
->
SetOutputDim
(
weight_grad_name
,
weight_dims
);
}
}
};
}
// namespace operators
}
// namespace paddle
namespace
ops
=
paddle
::
operators
;
REGISTER_OP
(
bilinear_tensor_product
,
ops
::
BilinearTensorProductOp
,
ops
::
BilinearTensorProductOpMaker
,
bilinear_tensor_product_grad
,
ops
::
BilinearTensorProductOpGrad
);
REGISTER_OP_CPU_KERNEL
(
bilinear_tensor_product
,
ops
::
BilinearTensorProductKernel
<
paddle
::
platform
::
CPUPlace
,
float
>
);
REGISTER_OP_CPU_KERNEL
(
bilinear_tensor_product_grad
,
ops
::
BilinearTensorProductGradKernel
<
paddle
::
platform
::
CPUPlace
,
float
>
);
paddle/operators/bilinear_tensor_product_op.cu
0 → 100644
浏览文件 @
611ee68b
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#define EIGEN_USE_GPU
#include "paddle/operators/bilinear_tensor_product_op.h"
namespace
ops
=
paddle
::
operators
;
REGISTER_OP_GPU_KERNEL
(
bilinear_tensor_product
,
ops
::
BilinearTensorProductKernel
<
paddle
::
platform
::
GPUPlace
,
float
>
);
REGISTER_OP_GPU_KERNEL
(
bilinear_tensor_product_grad
,
ops
::
BilinearTensorProductGradKernel
<
paddle
::
platform
::
GPUPlace
,
float
>
);
paddle/operators/bilinear_tensor_product_op.h
0 → 100644
浏览文件 @
611ee68b
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
You may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include "paddle/framework/op_registry.h"
#include "paddle/operators/math/math_function.h"
#include "paddle/platform/transform.h"
namespace
paddle
{
namespace
operators
{
using
Tensor
=
framework
::
Tensor
;
using
platform
::
Transform
;
template
<
typename
Place
,
typename
T
>
class
BilinearTensorProductKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
auto
*
x
=
ctx
.
Input
<
Tensor
>
(
"X"
);
auto
*
y
=
ctx
.
Input
<
Tensor
>
(
"Y"
);
auto
*
weight
=
ctx
.
Input
<
Tensor
>
(
"Weight"
);
auto
*
bias
=
ctx
.
Input
<
Tensor
>
(
"Bias"
);
auto
*
out
=
ctx
.
Output
<
Tensor
>
(
"Out"
);
out
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
auto
weight_dims
=
weight
->
dims
();
Tensor
left_mul_vec
;
left_mul_vec
.
mutable_data
<
T
>
(
framework
::
make_ddim
({
weight_dims
[
2
]}),
ctx
.
GetPlace
());
if
(
bias
)
{
out
->
CopyFrom
(
*
bias
,
ctx
.
GetPlace
(),
ctx
.
device_context
());
}
for
(
int
i
=
0
;
i
<
weight_dims
[
0
];
++
i
)
{
Tensor
weight_mat
=
weight
->
Slice
(
i
,
i
+
1
).
Resize
(
framework
::
make_ddim
({
weight_dims
[
1
],
weight_dims
[
2
]}));
math
::
gemm
<
Place
,
T
>
(
ctx
.
device_context
(),
CblasNoTrans
,
CblasNoTrans
,
1
,
weight_dims
[
2
],
weight_dims
[
1
],
1
,
x
->
data
<
T
>
(),
weight_mat
.
data
<
T
>
(),
0
,
left_mul_vec
.
data
<
T
>
());
if
(
bias
)
{
math
::
gemm
<
Place
,
T
>
(
ctx
.
device_context
(),
CblasNoTrans
,
CblasNoTrans
,
1
,
1
,
weight_dims
[
2
],
1
,
left_mul_vec
.
data
<
T
>
(),
y
->
data
<
T
>
(),
1
,
&
(
out
->
data
<
T
>
()[
i
]));
}
else
{
math
::
gemm
<
Place
,
T
>
(
ctx
.
device_context
(),
CblasNoTrans
,
CblasNoTrans
,
1
,
1
,
weight_dims
[
2
],
1
,
left_mul_vec
.
data
<
T
>
(),
y
->
data
<
T
>
(),
0
,
&
(
out
->
data
<
T
>
()[
i
]));
}
}
}
};
template
<
typename
T
>
class
ScaleFunctor
{
public:
explicit
ScaleFunctor
(
const
T
*
scale
)
:
scale_
(
scale
)
{}
HOSTDEVICE
T
operator
()(
const
T
&
x
)
const
{
return
x
*
(
*
scale_
);
}
private:
const
T
*
scale_
;
};
template
<
typename
Place
,
typename
T
>
class
BilinearTensorProductGradKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
const
Tensor
*
x
=
ctx
.
Input
<
Tensor
>
(
"X"
);
const
Tensor
*
y
=
ctx
.
Input
<
Tensor
>
(
"Y"
);
const
Tensor
*
weight
=
ctx
.
Input
<
Tensor
>
(
"Weight"
);
Tensor
*
d_x
=
ctx
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"X"
));
Tensor
*
d_y
=
ctx
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"Y"
));
Tensor
*
d_weight
=
ctx
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"Weight"
));
Tensor
*
d_bias
=
ctx
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"Bias"
));
const
Tensor
*
d_out
=
ctx
.
Input
<
Tensor
>
(
framework
::
GradVarName
(
"Out"
));
auto
*
d_out_ptr
=
d_out
->
data
<
T
>
();
auto
weight_dims
=
weight
->
dims
();
// Get the first matrix of Weight.
Tensor
weight_mat_0
=
weight
->
Slice
(
0
,
1
).
Resize
(
framework
::
make_ddim
({
weight_dims
[
1
],
weight_dims
[
2
]}));
// Create the intermediate variable for gradient.
int
numel_x
=
x
->
numel
();
int
numel_y
=
y
->
numel
();
const
T
*
x_ptr
=
x
->
data
<
T
>
();
const
T
*
y_ptr
=
y
->
data
<
T
>
();
Tensor
x_scale
;
T
*
x_scale_ptr
=
x_scale
.
mutable_data
<
T
>
(
framework
::
make_ddim
({
weight_dims
[
1
]}),
ctx
.
GetPlace
());
Tensor
y_scale
;
T
*
y_scale_ptr
=
y_scale
.
mutable_data
<
T
>
(
framework
::
make_ddim
({
weight_dims
[
2
]}),
ctx
.
GetPlace
());
Transform
<
Place
>
trans
;
// Caculate the gradient of X according to the first matrix of Weight.
if
(
d_x
)
{
d_x
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
trans
(
ctx
.
device_context
(),
y_ptr
,
y_ptr
+
numel_y
,
y_scale_ptr
,
ScaleFunctor
<
T
>
(
&
d_out_ptr
[
0
]));
math
::
gemm
<
Place
,
T
>
(
ctx
.
device_context
(),
CblasNoTrans
,
CblasTrans
,
1
,
weight_dims
[
1
],
weight_dims
[
2
],
1
,
y_scale
.
data
<
T
>
(),
weight_mat_0
.
data
<
T
>
(),
0
,
d_x
->
data
<
T
>
());
}
// Caculate the gradient of Y according to the first matrix of Weight.
if
(
d_y
)
{
d_y
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
trans
(
ctx
.
device_context
(),
x_ptr
,
x_ptr
+
numel_x
,
x_scale_ptr
,
ScaleFunctor
<
T
>
(
&
d_out_ptr
[
0
]));
math
::
gemm
<
Place
,
T
>
(
ctx
.
device_context
(),
CblasTrans
,
CblasNoTrans
,
weight_dims
[
2
],
1
,
weight_dims
[
1
],
1
,
weight_mat_0
.
data
<
T
>
(),
x_scale
.
data
<
T
>
(),
0
,
d_y
->
data
<
T
>
());
}
// Caculate the gradient of X and Y completly.
if
(
d_x
||
d_y
)
{
for
(
int
i
=
1
;
i
<
weight_dims
[
0
];
++
i
)
{
Tensor
weight_mat
=
weight
->
Slice
(
i
,
i
+
1
).
Resize
(
framework
::
make_ddim
({
weight_dims
[
1
],
weight_dims
[
2
]}));
if
(
d_x
)
{
trans
(
ctx
.
device_context
(),
y_ptr
,
y_ptr
+
numel_y
,
y_scale_ptr
,
ScaleFunctor
<
T
>
(
&
d_out_ptr
[
i
]));
math
::
gemm
<
Place
,
T
>
(
ctx
.
device_context
(),
CblasNoTrans
,
CblasTrans
,
1
,
weight_dims
[
1
],
weight_dims
[
2
],
1
,
y_scale
.
data
<
T
>
(),
weight_mat
.
data
<
T
>
(),
1
,
d_x
->
data
<
T
>
());
}
if
(
d_y
)
{
trans
(
ctx
.
device_context
(),
x_ptr
,
x_ptr
+
numel_x
,
x_scale_ptr
,
ScaleFunctor
<
T
>
(
&
d_out_ptr
[
i
]));
math
::
gemm
<
Place
,
T
>
(
ctx
.
device_context
(),
CblasTrans
,
CblasNoTrans
,
weight_dims
[
2
],
1
,
weight_dims
[
1
],
1
,
weight_mat
.
data
<
T
>
(),
x_scale
.
data
<
T
>
(),
1
,
d_y
->
data
<
T
>
());
}
}
}
// Caculate the gradient of Weight.
if
(
d_weight
)
{
d_weight
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
for
(
int
i
=
0
;
i
<
weight_dims
[
0
];
++
i
)
{
Tensor
d_weight_mat
=
d_weight
->
Slice
(
i
,
i
+
1
).
Resize
(
framework
::
make_ddim
({
weight_dims
[
1
],
weight_dims
[
2
]}));
trans
(
ctx
.
device_context
(),
x_ptr
,
x_ptr
+
numel_x
,
x_scale_ptr
,
ScaleFunctor
<
T
>
(
&
d_out_ptr
[
i
]));
math
::
gemm
<
Place
,
T
>
(
ctx
.
device_context
(),
CblasTrans
,
CblasNoTrans
,
weight_dims
[
1
],
weight_dims
[
2
],
1
,
1
,
x_scale
.
data
<
T
>
(),
y
->
data
<
T
>
(),
0
,
d_weight_mat
.
data
<
T
>
());
}
}
// Caculate the gradient of Bias.
if
(
d_bias
)
{
d_bias
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
d_bias
->
CopyFrom
(
*
d_out
,
ctx
.
GetPlace
(),
ctx
.
device_context
());
}
}
};
}
// namespace operators
}
// namespace paddle
python/paddle/v2/framework/tests/test_bilinear_tensor_product_op.py
0 → 100644
浏览文件 @
611ee68b
import
unittest
import
numpy
as
np
from
op_test
import
OpTest
class
TestBilinearTensorProductOp
(
OpTest
):
def
setUp
(
self
):
self
.
op_type
=
"bilinear_tensor_product"
self
.
inputs
=
{
'X'
:
np
.
random
.
random
(
3
).
astype
(
"float32"
),
'Y'
:
np
.
random
.
random
(
4
).
astype
(
"float32"
),
'Weight'
:
np
.
random
.
random
((
5
,
3
,
4
)).
astype
(
"float32"
),
'Bias'
:
np
.
random
.
random
(
5
).
astype
(
"float32"
)
}
self
.
outputs
=
{
'Out'
:
np
.
matmul
(
np
.
matmul
(
self
.
inputs
[
'Weight'
],
self
.
inputs
[
'Y'
]),
self
.
inputs
[
'X'
])
+
self
.
inputs
[
'Bias'
]
}
def
test_check_output
(
self
):
self
.
check_output
()
def
test_check_grad_normal
(
self
):
self
.
check_grad
(
[
'X'
,
'Y'
,
'Weight'
,
'Bias'
],
'Out'
,
max_relative_error
=
0.5
)
if
__name__
==
"__main__"
:
unittest
.
main
()
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录