未验证 提交 601964b4 编写于 作者: F Feng Ni 提交者: GitHub

skip frames for faster MOT deploy (#6629)

* skip frames for faster mot

* fix skip frame mot

* fix skip frame mot

* fix skip frame mot

* set skip frame default -1, test=document_fix
上级 a61f6915
...@@ -12,6 +12,7 @@ MOT: ...@@ -12,6 +12,7 @@ MOT:
model_dir: https://bj.bcebos.com/v1/paddledet/models/pipeline/mot_ppyoloe_l_36e_pipeline.zip model_dir: https://bj.bcebos.com/v1/paddledet/models/pipeline/mot_ppyoloe_l_36e_pipeline.zip
tracker_config: deploy/pipeline/config/tracker_config.yml tracker_config: deploy/pipeline/config/tracker_config.yml
batch_size: 1 batch_size: 1
skip_frame_num: -1 # preferably no more than 3
enable: False enable: False
KPT: KPT:
......
...@@ -10,6 +10,7 @@ MOT: ...@@ -10,6 +10,7 @@ MOT:
model_dir: https://bj.bcebos.com/v1/paddledet/models/pipeline/mot_ppyoloe_l_36e_ppvehicle.zip model_dir: https://bj.bcebos.com/v1/paddledet/models/pipeline/mot_ppyoloe_l_36e_ppvehicle.zip
tracker_config: deploy/pipeline/config/tracker_config.yml tracker_config: deploy/pipeline/config/tracker_config.yml
batch_size: 1 batch_size: 1
skip_frame_num: -1 # preferably no more than 3
enable: False enable: False
VEHICLE_PLATE: VEHICLE_PLATE:
......
...@@ -87,13 +87,13 @@ attr_thresh: 0.5 ...@@ -87,13 +87,13 @@ attr_thresh: 0.5
visual: True visual: True
MOT: MOT:
model_dir: output_inference/mot_ppyoloe_l_36e_pipeline/ model_dir: https://bj.bcebos.com/v1/paddledet/models/pipeline/mot_ppyoloe_l_36e_pipeline.zip
tracker_config: deploy/pipeline/config/tracker_config.yml tracker_config: deploy/pipeline/config/tracker_config.yml
batch_size: 1 batch_size: 1
enable: True enable: True
ATTR: ATTR:
model_dir: output_inference/strongbaseline_r50_30e_pa100k/ model_dir: https://bj.bcebos.com/v1/paddledet/models/pipeline/PPLCNet_x1_0_person_attribute_945_infer.zip
batch_size: 8 batch_size: 8
enable: True enable: True
``` ```
......
...@@ -81,13 +81,13 @@ visual: True ...@@ -81,13 +81,13 @@ visual: True
warmup_frame: 50 warmup_frame: 50
MOT: MOT:
model_dir: output_inference/mot_ppyoloe_l_36e_ppvehicle/ model_dir: https://bj.bcebos.com/v1/paddledet/models/pipeline/mot_ppyoloe_l_36e_ppvehicle.zip
tracker_config: deploy/pipeline/config/tracker_config.yml tracker_config: deploy/pipeline/config/tracker_config.yml
batch_size: 1 batch_size: 1
enable: True enable: True
VEHICLE_ATTR: VEHICLE_ATTR:
model_dir: output_inference/vehicle_attribute_infer/ model_dir: https://bj.bcebos.com/v1/paddledet/models/pipeline/vehicle_attribute_model.zip
batch_size: 8 batch_size: 8
color_threshold: 0.5 color_threshold: 0.5
type_threshold: 0.5 type_threshold: 0.5
...@@ -146,7 +146,7 @@ python deploy/pipeline/pipeline.py --config deploy/pipeline/config/infer_cfg_ppv ...@@ -146,7 +146,7 @@ python deploy/pipeline/pipeline.py --config deploy/pipeline/config/infer_cfg_ppv
## 方案介绍 ## 方案介绍
PP-Vehicle v2整体方案如下图所示: PP-Vehicle 整体方案如下图所示:
<div width="1000" align="center"> <div width="1000" align="center">
<img src="../../../../docs/images/ppvehicle.png"/> <img src="../../../../docs/images/ppvehicle.png"/>
......
...@@ -21,7 +21,16 @@ python deploy/pipeline/pipeline.py --config deploy/pipeline/config/infer_cfg_pph ...@@ -21,7 +21,16 @@ python deploy/pipeline/pipeline.py --config deploy/pipeline/config/infer_cfg_pph
--image_file=test_image.jpg \ --image_file=test_image.jpg \
--device=gpu --device=gpu
``` ```
3. 视频输入时,是跟踪任务,注意首先设置infer_cfg_pphuman.yml中的MOT配置的enable=True,然后启动命令如下 3. 视频输入时,是跟踪任务,注意首先设置infer_cfg_pphuman.yml中的MOT配置的`enable=True`,如果希望跳帧加速检测跟踪流程,可以设置`skip_frame_num: 2`,建议跳帧帧数最大不超过3:
```
MOT:
model_dir: https://bj.bcebos.com/v1/paddledet/models/pipeline/mot_ppyoloe_l_36e_pipeline.zip
tracker_config: deploy/pipeline/config/tracker_config.yml
batch_size: 1
skip_frame_num: 2
enable: True
```
然后启动命令如下
```python ```python
python deploy/pipeline/pipeline.py --config deploy/pipeline/config/infer_cfg_pphuman.yml \ python deploy/pipeline/pipeline.py --config deploy/pipeline/config/infer_cfg_pphuman.yml \
--video_file=test_video.mp4 \ --video_file=test_video.mp4 \
......
...@@ -21,7 +21,16 @@ python deploy/pipeline/pipeline.py --config deploy/pipeline/config/infer_cfg_pph ...@@ -21,7 +21,16 @@ python deploy/pipeline/pipeline.py --config deploy/pipeline/config/infer_cfg_pph
--image_file=test_image.jpg \ --image_file=test_image.jpg \
--device=gpu --device=gpu
``` ```
3. When use the video as input, it's a tracking task, first you should set the "enable: True" in MOT of infer_cfg_pphuman.yml, and then the start command is as follows: 3. When use the video as input, it's a tracking task, first you should set the "enable: True" in MOT of infer_cfg_pphuman.yml. If you want skip some frames speed up the detection and tracking process, you can set `skip_frame_num: 2`, it is recommended that the maximum number of skip_frame_num should not exceed 3:
```
MOT:
model_dir: https://bj.bcebos.com/v1/paddledet/models/pipeline/mot_ppyoloe_l_36e_pipeline.zip
tracker_config: deploy/pipeline/config/tracker_config.yml
batch_size: 1
skip_frame_num: 2
enable: True
```
and then the start command is as follows:
```python ```python
python deploy/pipeline/pipeline.py --config deploy/pipeline/config/infer_cfg_pphuman.yml \ python deploy/pipeline/pipeline.py --config deploy/pipeline/config/infer_cfg_pphuman.yml \
--video_file=test_video.mp4 \ --video_file=test_video.mp4 \
......
...@@ -28,7 +28,7 @@ MOT: ...@@ -28,7 +28,7 @@ MOT:
model_dir: output_inference/mot_ppyoloe_l_36e_ppvehicle/ # 车辆跟踪模型调用路径 model_dir: output_inference/mot_ppyoloe_l_36e_ppvehicle/ # 车辆跟踪模型调用路径
tracker_config: deploy/pipeline/config/tracker_config.yml tracker_config: deploy/pipeline/config/tracker_config.yml
batch_size: 1 # 模型预测时的batch_size大小, 跟踪任务只能设置为1 batch_size: 1 # 模型预测时的batch_size大小, 跟踪任务只能设置为1
skip_frame_num: 1 # 跳帧预测的帧数,默认为1即不跳帧,建议跳帧帧数最大不超过4 skip_frame_num: -1 # 跳帧预测的帧数,-1表示不进行跳帧,建议跳帧帧数最大不超过3
enable: False # 是否开启该功能,使用跟踪前必须确保设置为True enable: False # 是否开启该功能,使用跟踪前必须确保设置为True
``` ```
...@@ -40,7 +40,7 @@ python deploy/pipeline/pipeline.py --config deploy/pipeline/config/infer_cfg_ppv ...@@ -40,7 +40,7 @@ python deploy/pipeline/pipeline.py --config deploy/pipeline/config/infer_cfg_ppv
--image_file=test_image.jpg \ --image_file=test_image.jpg \
--device=gpu --device=gpu
``` ```
3. 视频输入时,是跟踪任务,注意首先设置infer_cfg_ppvehicle.yml中的MOT配置的`enable=True`,如果希望跳帧加速检测跟踪流程,可以设置`skip_frame_num: 2`,建议跳帧帧数最大不超过4 3. 视频输入时,是跟踪任务,注意首先设置infer_cfg_ppvehicle.yml中的MOT配置的`enable=True`,如果希望跳帧加速检测跟踪流程,可以设置`skip_frame_num: 2`,建议跳帧帧数最大不超过3
``` ```
MOT: MOT:
model_dir: https://bj.bcebos.com/v1/paddledet/models/pipeline/mot_ppyoloe_l_36e_ppvehicle.zip model_dir: https://bj.bcebos.com/v1/paddledet/models/pipeline/mot_ppyoloe_l_36e_ppvehicle.zip
......
...@@ -397,6 +397,7 @@ class PipePredictor(object): ...@@ -397,6 +397,7 @@ class PipePredictor(object):
model_dir = mot_cfg['model_dir'] model_dir = mot_cfg['model_dir']
tracker_config = mot_cfg['tracker_config'] tracker_config = mot_cfg['tracker_config']
batch_size = mot_cfg['batch_size'] batch_size = mot_cfg['batch_size']
skip_frame_num = mot_cfg.get('skip_frame_num', -1)
basemode = self.basemode['MOT'] basemode = self.basemode['MOT']
self.modebase[basemode] = True self.modebase[basemode] = True
self.mot_predictor = SDE_Detector( self.mot_predictor = SDE_Detector(
...@@ -411,6 +412,7 @@ class PipePredictor(object): ...@@ -411,6 +412,7 @@ class PipePredictor(object):
args.trt_calib_mode, args.trt_calib_mode,
args.cpu_threads, args.cpu_threads,
args.enable_mkldnn, args.enable_mkldnn,
skip_frame_num=skip_frame_num,
draw_center_traj=self.draw_center_traj, draw_center_traj=self.draw_center_traj,
secs_interval=self.secs_interval, secs_interval=self.secs_interval,
do_entrance_counting=self.do_entrance_counting, do_entrance_counting=self.do_entrance_counting,
...@@ -601,9 +603,15 @@ class PipePredictor(object): ...@@ -601,9 +603,15 @@ class PipePredictor(object):
if frame_id > self.warmup_frame: if frame_id > self.warmup_frame:
self.pipe_timer.total_time.start() self.pipe_timer.total_time.start()
self.pipe_timer.module_time['mot'].start() self.pipe_timer.module_time['mot'].start()
res = self.mot_predictor.predict_image(
[copy.deepcopy(frame_rgb)], visual=False)
mot_skip_frame_num = self.mot_predictor.skip_frame_num
reuse_det_result = False
if mot_skip_frame_num > 1 and frame_id > 0 and frame_id % mot_skip_frame_num > 0:
reuse_det_result = True
res = self.mot_predictor.predict_image(
[copy.deepcopy(frame_rgb)],
visual=False,
reuse_det_result=reuse_det_result)
if frame_id > self.warmup_frame: if frame_id > self.warmup_frame:
self.pipe_timer.module_time['mot'].end() self.pipe_timer.module_time['mot'].end()
......
...@@ -61,6 +61,7 @@ class JDE_Detector(Detector): ...@@ -61,6 +61,7 @@ class JDE_Detector(Detector):
save_mot_txts (bool): Whether to save tracking results (txt), default as False save_mot_txts (bool): Whether to save tracking results (txt), default as False
draw_center_traj (bool): Whether drawing the trajectory of center, default as False draw_center_traj (bool): Whether drawing the trajectory of center, default as False
secs_interval (int): The seconds interval to count after tracking, default as 10 secs_interval (int): The seconds interval to count after tracking, default as 10
skip_frame_num (int): Skip frame num to get faster MOT results, default as -1
do_entrance_counting(bool): Whether counting the numbers of identifiers entering do_entrance_counting(bool): Whether counting the numbers of identifiers entering
or getting out from the entrance, default as False,only support single class or getting out from the entrance, default as False,only support single class
counting in MOT. counting in MOT.
...@@ -93,6 +94,7 @@ class JDE_Detector(Detector): ...@@ -93,6 +94,7 @@ class JDE_Detector(Detector):
save_mot_txts=False, save_mot_txts=False,
draw_center_traj=False, draw_center_traj=False,
secs_interval=10, secs_interval=10,
skip_frame_num=-1,
do_entrance_counting=False, do_entrance_counting=False,
do_break_in_counting=False, do_break_in_counting=False,
region_type='horizontal', region_type='horizontal',
...@@ -114,6 +116,7 @@ class JDE_Detector(Detector): ...@@ -114,6 +116,7 @@ class JDE_Detector(Detector):
self.save_mot_txts = save_mot_txts self.save_mot_txts = save_mot_txts
self.draw_center_traj = draw_center_traj self.draw_center_traj = draw_center_traj
self.secs_interval = secs_interval self.secs_interval = secs_interval
self.skip_frame_num = skip_frame_num
self.do_entrance_counting = do_entrance_counting self.do_entrance_counting = do_entrance_counting
self.do_break_in_counting = do_break_in_counting self.do_break_in_counting = do_break_in_counting
self.region_type = region_type self.region_type = region_type
...@@ -126,6 +129,8 @@ class JDE_Detector(Detector): ...@@ -126,6 +129,8 @@ class JDE_Detector(Detector):
assert batch_size == 1, "MOT model only supports batch_size=1." assert batch_size == 1, "MOT model only supports batch_size=1."
self.det_times = Timer(with_tracker=True) self.det_times = Timer(with_tracker=True)
self.num_classes = len(self.pred_config.labels) self.num_classes = len(self.pred_config.labels)
if self.skip_frame_num > 1:
self.previous_det_result = None
# tracker config # tracker config
assert self.pred_config.tracker, "The exported JDE Detector model should have tracker." assert self.pred_config.tracker, "The exported JDE Detector model should have tracker."
...@@ -204,7 +209,8 @@ class JDE_Detector(Detector): ...@@ -204,7 +209,8 @@ class JDE_Detector(Detector):
run_benchmark=False, run_benchmark=False,
repeats=1, repeats=1,
visual=True, visual=True,
seq_name=None): seq_name=None,
reuse_det_result=False):
mot_results = [] mot_results = []
num_classes = self.num_classes num_classes = self.num_classes
image_list.sort() image_list.sort()
...@@ -246,15 +252,22 @@ class JDE_Detector(Detector): ...@@ -246,15 +252,22 @@ class JDE_Detector(Detector):
else: else:
self.det_times.preprocess_time_s.start() self.det_times.preprocess_time_s.start()
inputs = self.preprocess(batch_image_list) if not reuse_det_result:
inputs = self.preprocess(batch_image_list)
self.det_times.preprocess_time_s.end() self.det_times.preprocess_time_s.end()
self.det_times.inference_time_s.start() self.det_times.inference_time_s.start()
result = self.predict() if not reuse_det_result:
result = self.predict()
self.det_times.inference_time_s.end() self.det_times.inference_time_s.end()
self.det_times.postprocess_time_s.start() self.det_times.postprocess_time_s.start()
det_result = self.postprocess(inputs, result) if not reuse_det_result:
det_result = self.postprocess(inputs, result)
self.previous_det_result = det_result
else:
assert self.previous_det_result is not None
det_result = self.previous_det_result
self.det_times.postprocess_time_s.end() self.det_times.postprocess_time_s.end()
# tracking process # tracking process
...@@ -309,7 +322,7 @@ class JDE_Detector(Detector): ...@@ -309,7 +322,7 @@ class JDE_Detector(Detector):
fourcc = cv2.VideoWriter_fourcc(*video_format) fourcc = cv2.VideoWriter_fourcc(*video_format)
writer = cv2.VideoWriter(out_path, fourcc, fps, (width, height)) writer = cv2.VideoWriter(out_path, fourcc, fps, (width, height))
frame_id = 1 frame_id = 0
timer = MOTTimer() timer = MOTTimer()
results = defaultdict(list) # support single class and multi classes results = defaultdict(list) # support single class and multi classes
num_classes = self.num_classes num_classes = self.num_classes
...@@ -355,12 +368,18 @@ class JDE_Detector(Detector): ...@@ -355,12 +368,18 @@ class JDE_Detector(Detector):
break break
if frame_id % 10 == 0: if frame_id % 10 == 0:
print('Tracking frame: %d' % (frame_id)) print('Tracking frame: %d' % (frame_id))
frame_id += 1
timer.tic() timer.tic()
mot_skip_frame_num = self.skip_frame_num
reuse_det_result = False
if mot_skip_frame_num > 1 and frame_id > 0 and frame_id % mot_skip_frame_num > 0:
reuse_det_result = True
seq_name = video_out_name.split('.')[0] seq_name = video_out_name.split('.')[0]
mot_results = self.predict_image( mot_results = self.predict_image(
[frame], visual=False, seq_name=seq_name) [frame],
visual=False,
seq_name=seq_name,
reuse_det_result=reuse_det_result)
timer.toc() timer.toc()
online_tlwhs, online_scores, online_ids = mot_results[0] online_tlwhs, online_scores, online_ids = mot_results[0]
...@@ -400,6 +419,7 @@ class JDE_Detector(Detector): ...@@ -400,6 +419,7 @@ class JDE_Detector(Detector):
cv2.imshow('Mask Detection', im) cv2.imshow('Mask Detection', im)
if cv2.waitKey(1) & 0xFF == ord('q'): if cv2.waitKey(1) & 0xFF == ord('q'):
break break
frame_id += 1
if self.save_mot_txts: if self.save_mot_txts:
result_filename = os.path.join( result_filename = os.path.join(
...@@ -439,6 +459,7 @@ def main(): ...@@ -439,6 +459,7 @@ def main():
save_mot_txts=FLAGS.save_mot_txts, save_mot_txts=FLAGS.save_mot_txts,
draw_center_traj=FLAGS.draw_center_traj, draw_center_traj=FLAGS.draw_center_traj,
secs_interval=FLAGS.secs_interval, secs_interval=FLAGS.secs_interval,
skip_frame_num=FLAGS.skip_frame_num,
do_entrance_counting=FLAGS.do_entrance_counting, do_entrance_counting=FLAGS.do_entrance_counting,
do_break_in_counting=FLAGS.do_break_in_counting, do_break_in_counting=FLAGS.do_break_in_counting,
region_type=FLAGS.region_type, region_type=FLAGS.region_type,
......
...@@ -62,6 +62,7 @@ class SDE_Detector(Detector): ...@@ -62,6 +62,7 @@ class SDE_Detector(Detector):
save_mot_txts (bool): Whether to save tracking results (txt), default as False save_mot_txts (bool): Whether to save tracking results (txt), default as False
draw_center_traj (bool): Whether drawing the trajectory of center, default as False draw_center_traj (bool): Whether drawing the trajectory of center, default as False
secs_interval (int): The seconds interval to count after tracking, default as 10 secs_interval (int): The seconds interval to count after tracking, default as 10
skip_frame_num (int): Skip frame num to get faster MOT results, default as -1
do_entrance_counting(bool): Whether counting the numbers of identifiers entering do_entrance_counting(bool): Whether counting the numbers of identifiers entering
or getting out from the entrance, default as False,only support single class or getting out from the entrance, default as False,only support single class
counting in MOT, and the video should be taken by a static camera. counting in MOT, and the video should be taken by a static camera.
...@@ -96,6 +97,7 @@ class SDE_Detector(Detector): ...@@ -96,6 +97,7 @@ class SDE_Detector(Detector):
save_mot_txts=False, save_mot_txts=False,
draw_center_traj=False, draw_center_traj=False,
secs_interval=10, secs_interval=10,
skip_frame_num=-1,
do_entrance_counting=False, do_entrance_counting=False,
do_break_in_counting=False, do_break_in_counting=False,
region_type='horizontal', region_type='horizontal',
...@@ -119,6 +121,7 @@ class SDE_Detector(Detector): ...@@ -119,6 +121,7 @@ class SDE_Detector(Detector):
self.save_mot_txts = save_mot_txts self.save_mot_txts = save_mot_txts
self.draw_center_traj = draw_center_traj self.draw_center_traj = draw_center_traj
self.secs_interval = secs_interval self.secs_interval = secs_interval
self.skip_frame_num = skip_frame_num
self.do_entrance_counting = do_entrance_counting self.do_entrance_counting = do_entrance_counting
self.do_break_in_counting = do_break_in_counting self.do_break_in_counting = do_break_in_counting
self.region_type = region_type self.region_type = region_type
...@@ -131,6 +134,8 @@ class SDE_Detector(Detector): ...@@ -131,6 +134,8 @@ class SDE_Detector(Detector):
assert batch_size == 1, "MOT model only supports batch_size=1." assert batch_size == 1, "MOT model only supports batch_size=1."
self.det_times = Timer(with_tracker=True) self.det_times = Timer(with_tracker=True)
self.num_classes = len(self.pred_config.labels) self.num_classes = len(self.pred_config.labels)
if self.skip_frame_num > 1:
self.previous_det_result = None
# reid config # reid config
self.use_reid = False if reid_model_dir is None else True self.use_reid = False if reid_model_dir is None else True
...@@ -414,7 +419,8 @@ class SDE_Detector(Detector): ...@@ -414,7 +419,8 @@ class SDE_Detector(Detector):
run_benchmark=False, run_benchmark=False,
repeats=1, repeats=1,
visual=True, visual=True,
seq_name=None): seq_name=None,
reuse_det_result=False):
num_classes = self.num_classes num_classes = self.num_classes
image_list.sort() image_list.sort()
ids2names = self.pred_config.labels ids2names = self.pred_config.labels
...@@ -468,15 +474,22 @@ class SDE_Detector(Detector): ...@@ -468,15 +474,22 @@ class SDE_Detector(Detector):
else: else:
self.det_times.preprocess_time_s.start() self.det_times.preprocess_time_s.start()
inputs = self.preprocess(batch_image_list) if not reuse_det_result:
inputs = self.preprocess(batch_image_list)
self.det_times.preprocess_time_s.end() self.det_times.preprocess_time_s.end()
self.det_times.inference_time_s.start() self.det_times.inference_time_s.start()
result = self.predict() if not reuse_det_result:
result = self.predict()
self.det_times.inference_time_s.end() self.det_times.inference_time_s.end()
self.det_times.postprocess_time_s.start() self.det_times.postprocess_time_s.start()
det_result = self.postprocess(inputs, result) if not reuse_det_result:
det_result = self.postprocess(inputs, result)
self.previous_det_result = det_result
else:
assert self.previous_det_result is not None
det_result = self.previous_det_result
self.det_times.postprocess_time_s.end() self.det_times.postprocess_time_s.end()
# tracking process # tracking process
...@@ -553,7 +566,7 @@ class SDE_Detector(Detector): ...@@ -553,7 +566,7 @@ class SDE_Detector(Detector):
fourcc = cv2.VideoWriter_fourcc(*video_format) fourcc = cv2.VideoWriter_fourcc(*video_format)
writer = cv2.VideoWriter(out_path, fourcc, fps, (width, height)) writer = cv2.VideoWriter(out_path, fourcc, fps, (width, height))
frame_id = 1 frame_id = 0
timer = MOTTimer() timer = MOTTimer()
results = defaultdict(list) results = defaultdict(list)
num_classes = self.num_classes num_classes = self.num_classes
...@@ -599,12 +612,18 @@ class SDE_Detector(Detector): ...@@ -599,12 +612,18 @@ class SDE_Detector(Detector):
break break
if frame_id % 10 == 0: if frame_id % 10 == 0:
print('Tracking frame: %d' % (frame_id)) print('Tracking frame: %d' % (frame_id))
frame_id += 1
timer.tic() timer.tic()
mot_skip_frame_num = self.skip_frame_num
reuse_det_result = False
if mot_skip_frame_num > 1 and frame_id > 0 and frame_id % mot_skip_frame_num > 0:
reuse_det_result = True
seq_name = video_out_name.split('.')[0] seq_name = video_out_name.split('.')[0]
mot_results = self.predict_image( mot_results = self.predict_image(
[frame], visual=False, seq_name=seq_name) [frame],
visual=False,
seq_name=seq_name,
reuse_det_result=reuse_det_result)
timer.toc() timer.toc()
# bs=1 in MOT model # bs=1 in MOT model
...@@ -661,6 +680,7 @@ class SDE_Detector(Detector): ...@@ -661,6 +680,7 @@ class SDE_Detector(Detector):
cv2.imshow('Mask Detection', im) cv2.imshow('Mask Detection', im)
if cv2.waitKey(1) & 0xFF == ord('q'): if cv2.waitKey(1) & 0xFF == ord('q'):
break break
frame_id += 1
if self.save_mot_txts: if self.save_mot_txts:
result_filename = os.path.join( result_filename = os.path.join(
...@@ -803,6 +823,7 @@ def main(): ...@@ -803,6 +823,7 @@ def main():
save_mot_txts=FLAGS.save_mot_txts, save_mot_txts=FLAGS.save_mot_txts,
draw_center_traj=FLAGS.draw_center_traj, draw_center_traj=FLAGS.draw_center_traj,
secs_interval=FLAGS.secs_interval, secs_interval=FLAGS.secs_interval,
skip_frame_num=FLAGS.skip_frame_num,
do_entrance_counting=FLAGS.do_entrance_counting, do_entrance_counting=FLAGS.do_entrance_counting,
do_break_in_counting=FLAGS.do_break_in_counting, do_break_in_counting=FLAGS.do_break_in_counting,
region_type=FLAGS.region_type, region_type=FLAGS.region_type,
......
...@@ -137,6 +137,11 @@ def argsparser(): ...@@ -137,6 +137,11 @@ def argsparser():
type=ast.literal_eval, type=ast.literal_eval,
default=True, default=True,
help='whether to use darkpose to get better keypoint position predict ') help='whether to use darkpose to get better keypoint position predict ')
parser.add_argument(
'--skip_frame_num',
type=int,
default=-1,
help='Skip frames to speed up the process of getting mot results.')
parser.add_argument( parser.add_argument(
"--do_entrance_counting", "--do_entrance_counting",
action='store_true', action='store_true',
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册