Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleDetection
提交
5f924007
P
PaddleDetection
项目概览
PaddlePaddle
/
PaddleDetection
大约 1 年 前同步成功
通知
695
Star
11112
Fork
2696
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
184
列表
看板
标记
里程碑
合并请求
40
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
184
Issue
184
列表
看板
标记
里程碑
合并请求
40
合并请求
40
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
5f924007
编写于
4月 24, 2017
作者:
J
jacquesqiao
提交者:
GitHub
4月 24, 2017
浏览文件
操作
浏览文件
下载
差异文件
Merge pull request #1782 from jacquesqiao/support-remote-updater
support distribute training in python v2 API
上级
f22302ad
cb84cbab
变更
7
隐藏空白更改
内联
并排
Showing
7 changed file
with
157 addition
and
35 deletion
+157
-35
demo/word2vec/api_train_v2.py
demo/word2vec/api_train_v2.py
+26
-6
paddle/api/PaddleAPI.h
paddle/api/PaddleAPI.h
+14
-3
paddle/api/ParameterUpdater.cpp
paddle/api/ParameterUpdater.cpp
+19
-3
paddle/gserver/gradientmachines/MultiGradientMachine.cpp
paddle/gserver/gradientmachines/MultiGradientMachine.cpp
+1
-1
python/paddle/v2/optimizer.py
python/paddle/v2/optimizer.py
+27
-4
python/paddle/v2/topology.py
python/paddle/v2/topology.py
+12
-0
python/paddle/v2/trainer.py
python/paddle/v2/trainer.py
+58
-18
未找到文件。
demo/word2vec/train_v2.py
→
demo/word2vec/
api_
train_v2.py
浏览文件 @
5f924007
import
gzip
import
math
import
paddle.v2
as
paddle
dictsize
=
1953
embsize
=
32
hiddensize
=
256
N
=
5
def
wordemb
(
inlayer
):
wordemb
=
paddle
.
layer
.
table_projection
(
wordemb
=
paddle
.
layer
.
embedding
(
input
=
inlayer
,
size
=
embsize
,
param_attr
=
paddle
.
attr
.
Param
(
name
=
"_proj"
,
initial_std
=
0.001
,
learning_rate
=
1
,
l2_rate
=
0
,
))
l2_rate
=
0
,
sparse_update
=
True
))
return
wordemb
def
main
():
paddle
.
init
(
use_gpu
=
False
,
trainer_count
=
1
)
# for local training
cluster_train
=
False
if
not
cluster_train
:
paddle
.
init
(
use_gpu
=
False
,
trainer_count
=
1
)
else
:
paddle
.
init
(
use_gpu
=
False
,
trainer_count
=
2
,
port
=
7164
,
ports_num
=
1
,
ports_num_for_sparse
=
1
,
num_gradient_servers
=
1
)
word_dict
=
paddle
.
dataset
.
imikolov
.
build_dict
()
dict_size
=
len
(
word_dict
)
firstword
=
paddle
.
layer
.
data
(
...
...
@@ -57,6 +70,9 @@ def main():
def
event_handler
(
event
):
if
isinstance
(
event
,
paddle
.
event
.
EndIteration
):
if
event
.
batch_id
%
100
==
0
:
with
gzip
.
open
(
"batch-"
+
str
(
event
.
batch_id
)
+
".tar.gz"
,
'w'
)
as
f
:
trainer
.
save_parameter_to_tar
(
f
)
result
=
trainer
.
test
(
paddle
.
batch
(
paddle
.
dataset
.
imikolov
.
test
(
word_dict
,
N
),
32
))
...
...
@@ -65,11 +81,15 @@ def main():
result
.
metrics
)
cost
=
paddle
.
layer
.
classification_cost
(
input
=
predictword
,
label
=
nextword
)
parameters
=
paddle
.
parameters
.
create
(
cost
)
ada
m_optimizer
=
paddle
.
optimizer
.
Adam
(
ada
grad
=
paddle
.
optimizer
.
AdaGrad
(
learning_rate
=
3e-3
,
regularization
=
paddle
.
optimizer
.
L2Regularization
(
8e-4
))
trainer
=
paddle
.
trainer
.
SGD
(
cost
,
parameters
,
adam_optimizer
)
trainer
=
paddle
.
trainer
.
SGD
(
cost
,
parameters
,
adagrad
,
is_local
=
not
cluster_train
)
trainer
.
train
(
paddle
.
batch
(
paddle
.
dataset
.
imikolov
.
train
(
word_dict
,
N
),
32
),
num_passes
=
30
,
...
...
paddle/api/PaddleAPI.h
浏览文件 @
5f924007
...
...
@@ -19,6 +19,7 @@ limitations under the License. */
#include <stdexcept>
#include <string>
#include <vector>
#include "paddle/gserver/gradientmachines/GradientMachine.h"
#include "paddle/utils/Common.h"
#include "paddle/utils/GlobalConstants.h"
...
...
@@ -468,8 +469,10 @@ private:
};
enum
GradientMatchineCreateMode
{
CREATE_MODE_NORMAL
=
0
,
CREATE_MODE_TESTING
=
4
CREATE_MODE_NORMAL
=
paddle
::
GradientMachine
::
kNormal
,
CREATE_MODE_SGD_SPARSE_CPU_TRAINING
=
paddle
::
GradientMachine
::
kSgdSparseCpuTraining
,
CREATE_MODE_TESTING
=
paddle
::
GradientMachine
::
kTesting
};
struct
ParameterConfigPrivate
;
...
...
@@ -817,7 +820,8 @@ private:
public:
static
ParameterUpdater
*
createLocalUpdater
(
OptimizationConfig
*
config
);
static
ParameterUpdater
*
createRemoteUpdater
(
OptimizationConfig
*
config
,
int
passCount
);
int
passCount
,
bool
useSparseUpdater
);
~
ParameterUpdater
();
/**
...
...
@@ -855,6 +859,13 @@ public:
*/
void
update
(
Parameter
*
param
);
/**
* @breif only get required sparse rows by default.
* @param fullSize: get full matrix parameter if *fullSize* set
* @param apply: get PARAMETER_APPLY on pserver if *apply* set
*/
void
getParametersRemote
(
bool
fullSize
=
false
,
bool
apply
=
false
);
/**
* @brief restore the average parameter.
* @note It is only used in AverageOptimizer. Restore will get the current
...
...
paddle/api/ParameterUpdater.cpp
浏览文件 @
5f924007
...
...
@@ -29,10 +29,22 @@ ParameterUpdater *ParameterUpdater::createLocalUpdater(
}
ParameterUpdater
*
ParameterUpdater
::
createRemoteUpdater
(
OptimizationConfig
*
config
,
int
passCount
)
{
OptimizationConfig
*
config
,
int
passCount
,
bool
useSparseUpdater
)
{
auto
updater
=
new
ParameterUpdater
();
updater
->
m
->
updater
.
reset
(
new
paddle
::
RemoteParameterUpdater
(
config
->
m
->
getConfig
(),
passCount
,
nullptr
));
auto
remoteUpdater
=
new
paddle
::
RemoteParameterUpdater
(
config
->
m
->
getConfig
(),
passCount
,
nullptr
);
if
(
useSparseUpdater
)
{
std
::
unique_ptr
<
paddle
::
ParameterUpdater
>
remoteUpdaterPtr
(
remoteUpdater
);
auto
sparseRemoteUpdater
=
new
paddle
::
SparseRemoteParameterUpdaterComposite
(
config
->
m
->
getConfig
(),
passCount
,
false
,
std
::
move
(
remoteUpdaterPtr
));
updater
->
m
->
updater
.
reset
(
sparseRemoteUpdater
);
}
else
{
updater
->
m
->
updater
.
reset
(
remoteUpdater
);
}
return
updater
;
}
...
...
@@ -59,6 +71,10 @@ void ParameterUpdater::update(Parameter *param) {
m
->
updater
->
update
(
paddleParam
);
}
void
ParameterUpdater
::
getParametersRemote
(
bool
fullSize
,
bool
apply
)
{
m
->
updater
->
getParametersRemote
(
fullSize
,
apply
);
}
void
ParameterUpdater
::
restore
()
{
m
->
updater
->
restore
();
}
void
ParameterUpdater
::
apply
()
{
m
->
updater
->
apply
();
}
...
...
paddle/gserver/gradientmachines/MultiGradientMachine.cpp
浏览文件 @
5f924007
...
...
@@ -518,7 +518,7 @@ void TrainerThread::computeThread() {
backward
();
break
;
case
MultiGradientMachine
::
TASK_COPY_IN_ARGS
:
copyInArgs
();
batchSize_
=
copyInArgs
();
inArgsCopied_
=
true
;
multiMachine_
->
waitForCopyInArgs
();
break
;
...
...
python/paddle/v2/optimizer.py
浏览文件 @
5f924007
...
...
@@ -38,12 +38,35 @@ class Optimizer(object):
assert
isinstance
(
tmp
,
swig_api
.
ParameterOptimizer
)
return
tmp
.
getParameterTypes
()
def
create_local_updater
(
self
):
def
__create_local_updater__
(
self
):
return
swig_api
.
ParameterUpdater
.
createLocalUpdater
(
self
.
__opt_conf__
)
def
create_remote_updater
(
self
,
pass_num
):
return
swig_api
.
ParameterUpdater
.
createRemoteUpdater
(
self
.
__opt_conf__
,
pass_num
)
def
__create_remote_updater__
(
self
,
pass_num
,
use_sparse_updater
):
return
swig_api
.
ParameterUpdater
.
createRemoteUpdater
(
self
.
__opt_conf__
,
pass_num
,
use_sparse_updater
)
def
create_updater
(
self
,
is_local
,
num_passes
,
use_sparse_updater
):
"""
create proper parameter_updater by configuration.
:param is_local: create local or remote parameter updater
:param num_passes: remote parameter updater will use this to config
parameter server.
:param use_sparse_updater: when use remote updater, if some parameter is
sparse, updater should do some extra thing:
.. code-block:: python
if use_sparse_remote_updater:
gradient_machine.prefetch(in_args)
parameter_updater.getParametersRemote()
:return: parameter_updater
"""
if
is_local
:
parameter_updater
=
self
.
__create_local_updater__
()
else
:
parameter_updater
=
self
.
__create_remote_updater__
(
num_passes
,
use_sparse_updater
)
return
parameter_updater
class
Momentum
(
Optimizer
):
...
...
python/paddle/v2/topology.py
浏览文件 @
5f924007
...
...
@@ -73,6 +73,18 @@ class Topology(object):
assert
isinstance
(
self
.
__model_config__
,
ModelConfig
)
def
use_sparse_updater
(
self
):
"""
check if any parameter require to use sparse_update
:return:
"""
use_sparse
=
False
for
parameter
in
self
.
__model_config__
.
parameters
:
if
parameter
.
sparse_update
or
parameter
.
sparse_remote_update
:
use_sparse
=
True
break
return
use_sparse
def
proto
(
self
):
return
self
.
__model_config__
...
...
python/paddle/v2/trainer.py
浏览文件 @
5f924007
...
...
@@ -2,6 +2,8 @@
Module Trainer
"""
import
collections
import
gzip
import
os
import
py_paddle.swig_paddle
as
api
...
...
@@ -42,7 +44,12 @@ class SGD(object):
:type extra_layers: paddle.v2.config_base.Layer
"""
def
__init__
(
self
,
cost
,
parameters
,
update_equation
,
extra_layers
=
None
):
def
__init__
(
self
,
cost
,
parameters
,
update_equation
,
extra_layers
=
None
,
is_local
=
True
):
if
not
isinstance
(
parameters
,
v2_parameters
.
Parameters
):
raise
TypeError
(
'parameters should be parameters'
)
...
...
@@ -55,20 +62,48 @@ class SGD(object):
self
.
__topology__
=
topology
self
.
__parameters__
=
parameters
self
.
__topology_in_proto__
=
topology
.
proto
()
self
.
__is_local__
=
is_local
# In local mode, disable sparse_remote_update.
for
param
in
self
.
__topology_in_proto__
.
parameters
:
if
param
.
sparse_remote_update
:
param
.
sparse_remote_update
=
False
self
.
__use_sparse_updater__
=
self
.
__topology__
.
use_sparse_updater
()
# # In local mode, disable sparse_remote_update.
if
is_local
:
for
param
in
self
.
__topology_in_proto__
.
parameters
:
if
param
.
sparse_remote_update
:
param
.
sparse_remote_update
=
False
self
.
__gm_create_mode__
=
api
.
CREATE_MODE_NORMAL
if
not
\
self
.
__use_sparse_updater__
else
api
.
CREATE_MODE_SGD_SPARSE_CPU_TRAINING
self
.
__data_types__
=
topology
.
data_type
()
gm
=
api
.
GradientMachine
.
createFromConfigProto
(
self
.
__topology_in_proto__
,
api
.
CREATE_MODE_NORMAL
,
self
.
__topology_in_proto__
,
self
.
__gm_create_mode__
,
self
.
__optimizer__
.
enable_types
())
assert
isinstance
(
gm
,
api
.
GradientMachine
)
self
.
__gradient_machine__
=
gm
self
.
__gradient_machine__
.
randParameters
()
parameters
.
append_gradient_machine
(
gm
)
self
.
__parameters__
.
append_gradient_machine
(
gm
)
self
.
__parameter_updater__
=
None
def
__use_remote_sparse_updater__
(
self
):
return
self
.
__use_sparse_updater__
and
not
self
.
__is_local__
def
__prepare_parameter__
(
self
,
in_args
):
"""
prepare parameter before forward backward.
1. When use remote sparse updater, parameters should be got
from ps according to input arguments.
:param in_args: input arguments of this batch.
:return:
"""
if
self
.
__use_remote_sparse_updater__
():
self
.
__gradient_machine__
.
prefetch
(
in_args
)
self
.
__parameter_updater__
.
getParametersRemote
()
def
save_parameter_to_tar
(
self
,
f
):
self
.
__parameter_updater__
.
catchUpWith
()
self
.
__parameter_updater__
.
apply
()
self
.
__parameter_updater__
.
getParametersRemote
(
True
,
True
)
self
.
__parameters__
.
to_tar
(
f
)
self
.
__parameter_updater__
.
restore
()
def
train
(
self
,
reader
,
num_passes
=
1
,
event_handler
=
None
,
feeding
=
None
):
"""
...
...
@@ -90,8 +125,9 @@ class SGD(object):
event_handler
=
default_event_handler
__check_train_args__
(
**
locals
())
updater
=
self
.
__optimizer__
.
create_local_updater
()
updater
.
init
(
self
.
__gradient_machine__
)
self
.
__parameter_updater__
=
self
.
__optimizer__
.
create_updater
(
self
.
__is_local__
,
num_passes
,
self
.
__use_sparse_updater__
)
self
.
__parameter_updater__
.
init
(
self
.
__gradient_machine__
)
self
.
__gradient_machine__
.
start
()
batch_evaluator
=
self
.
__gradient_machine__
.
makeEvaluator
()
...
...
@@ -103,23 +139,26 @@ class SGD(object):
for
pass_id
in
xrange
(
num_passes
):
event_handler
(
v2_event
.
BeginPass
(
pass_id
))
pass_evaluator
.
start
()
updater
.
startPass
()
self
.
__parameter_updater__
.
startPass
()
for
batch_id
,
data_batch
in
enumerate
(
reader
()):
batch_evaluator
.
start
()
event_handler
(
v2_event
.
BeginIteration
(
pass_id
=
pass_id
,
batch_id
=
batch_id
))
pass_type
=
updater
.
startBatch
(
len
(
data_batch
))
self
.
__gradient_machine__
.
forwardBackward
(
feeder
(
data_batch
),
out_args
,
pass_type
)
pass_type
=
self
.
__parameter_updater__
.
startBatch
(
len
(
data_batch
))
in_args
=
feeder
(
data_batch
)
self
.
__prepare_parameter__
(
in_args
)
self
.
__gradient_machine__
.
forwardBackward
(
in_args
,
out_args
,
pass_type
)
self
.
__gradient_machine__
.
eval
(
pass_evaluator
)
self
.
__gradient_machine__
.
eval
(
batch_evaluator
)
for
each_param
in
self
.
__gradient_machine__
.
getNonStaticParameters
(
):
updater
.
update
(
each_param
)
self
.
__parameter_updater__
.
update
(
each_param
)
cost_sum
=
out_args
.
sum
()
cost
=
cost_sum
/
len
(
data_batch
)
updater
.
finishBatch
(
cost
)
self
.
__parameter_updater__
.
finishBatch
(
cost
)
batch_evaluator
.
finish
()
event_handler
(
v2_event
.
EndIteration
(
...
...
@@ -128,7 +167,7 @@ class SGD(object):
cost
=
cost
,
evaluator
=
batch_evaluator
))
updater
.
finishPass
()
self
.
__parameter_updater__
.
finishPass
()
pass_evaluator
.
finish
()
event_handler
(
v2_event
.
EndPass
(
pass_id
,
evaluator
=
pass_evaluator
))
self
.
__gradient_machine__
.
finish
()
...
...
@@ -152,8 +191,9 @@ class SGD(object):
num_samples
=
0.0
for
data_batch
in
reader
():
num_samples
+=
len
(
data_batch
)
self
.
__gradient_machine__
.
forward
(
feeder
(
data_batch
),
out_args
,
api
.
PASS_TEST
)
in_args
=
feeder
(
data_batch
)
self
.
__prepare_parameter__
(
in_args
)
self
.
__gradient_machine__
.
forward
(
in_args
,
out_args
,
api
.
PASS_TEST
)
total_cost
+=
out_args
.
sum
()
self
.
__gradient_machine__
.
eval
(
evaluator
)
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录