Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleDetection
提交
5d9dcfc1
P
PaddleDetection
项目概览
PaddlePaddle
/
PaddleDetection
大约 1 年 前同步成功
通知
695
Star
11112
Fork
2696
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
184
列表
看板
标记
里程碑
合并请求
40
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
184
Issue
184
列表
看板
标记
里程碑
合并请求
40
合并请求
40
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
5d9dcfc1
编写于
1月 11, 2018
作者:
D
Darcy
提交者:
GitHub
1月 11, 2018
浏览文件
操作
浏览文件
下载
差异文件
Merge pull request #7429 from putcn/book_demo_distributed_understand_sentiment_
Book demo understand sentiment distributed version
上级
bfc68f25
4a3580ac
变更
1
隐藏空白更改
内联
并排
Showing
1 changed file
with
110 addition
and
0 deletion
+110
-0
python/paddle/v2/fluid/tests/book_distribute/test_understand_sentiment_conv_dist.py
...ts/book_distribute/test_understand_sentiment_conv_dist.py
+110
-0
未找到文件。
python/paddle/v2/fluid/tests/book_distribute/test_understand_sentiment_conv_dist.py
0 → 100644
浏览文件 @
5d9dcfc1
from
__future__
import
print_function
import
os
import
numpy
as
np
import
paddle.v2
as
paddle
import
paddle.v2.fluid
as
fluid
def
convolution_net
(
data
,
label
,
input_dim
,
class_dim
=
2
,
emb_dim
=
32
,
hid_dim
=
32
):
emb
=
fluid
.
layers
.
embedding
(
input
=
data
,
size
=
[
input_dim
,
emb_dim
])
conv_3
=
fluid
.
nets
.
sequence_conv_pool
(
input
=
emb
,
num_filters
=
hid_dim
,
filter_size
=
3
,
act
=
"tanh"
,
pool_type
=
"sqrt"
)
conv_4
=
fluid
.
nets
.
sequence_conv_pool
(
input
=
emb
,
num_filters
=
hid_dim
,
filter_size
=
4
,
act
=
"tanh"
,
pool_type
=
"sqrt"
)
prediction
=
fluid
.
layers
.
fc
(
input
=
[
conv_3
,
conv_4
],
size
=
class_dim
,
act
=
"softmax"
)
cost
=
fluid
.
layers
.
cross_entropy
(
input
=
prediction
,
label
=
label
)
avg_cost
=
fluid
.
layers
.
mean
(
x
=
cost
)
adam_optimizer
=
fluid
.
optimizer
.
Adam
(
learning_rate
=
0.002
)
optimize_ops
,
params_grads
=
adam_optimizer
.
minimize
(
avg_cost
)
accuracy
=
fluid
.
evaluator
.
Accuracy
(
input
=
prediction
,
label
=
label
)
return
avg_cost
,
accuracy
,
accuracy
.
metrics
[
0
],
optimize_ops
,
params_grads
def
to_lodtensor
(
data
,
place
):
seq_lens
=
[
len
(
seq
)
for
seq
in
data
]
cur_len
=
0
lod
=
[
cur_len
]
for
l
in
seq_lens
:
cur_len
+=
l
lod
.
append
(
cur_len
)
flattened_data
=
np
.
concatenate
(
data
,
axis
=
0
).
astype
(
"int64"
)
flattened_data
=
flattened_data
.
reshape
([
len
(
flattened_data
),
1
])
res
=
fluid
.
LoDTensor
()
res
.
set
(
flattened_data
,
place
)
res
.
set_lod
([
lod
])
return
res
def
main
():
BATCH_SIZE
=
100
PASS_NUM
=
5
word_dict
=
paddle
.
dataset
.
imdb
.
word_dict
()
dict_dim
=
len
(
word_dict
)
class_dim
=
2
data
=
fluid
.
layers
.
data
(
name
=
"words"
,
shape
=
[
1
],
dtype
=
"int64"
,
lod_level
=
1
)
label
=
fluid
.
layers
.
data
(
name
=
"label"
,
shape
=
[
1
],
dtype
=
"int64"
)
cost
,
accuracy
,
acc_out
,
optimize_ops
,
params_grads
=
convolution_net
(
data
,
label
,
input_dim
=
dict_dim
,
class_dim
=
class_dim
)
train_data
=
paddle
.
batch
(
paddle
.
reader
.
shuffle
(
paddle
.
dataset
.
imdb
.
train
(
word_dict
),
buf_size
=
1000
),
batch_size
=
BATCH_SIZE
)
place
=
fluid
.
CPUPlace
()
exe
=
fluid
.
Executor
(
place
)
t
=
fluid
.
DistributeTranspiler
()
# all parameter server endpoints list for spliting parameters
pserver_endpoints
=
os
.
getenv
(
"PSERVERS"
)
# server endpoint for current node
current_endpoint
=
os
.
getenv
(
"SERVER_ENDPOINT"
)
# run as trainer or parameter server
training_role
=
os
.
getenv
(
"TRAINING_ROLE"
,
"TRAINER"
)
# get the training role: trainer/pserver
t
.
transpile
(
optimize_ops
,
params_grads
,
pservers
=
pserver_endpoints
,
trainers
=
2
)
exe
.
run
(
fluid
.
default_startup_program
())
if
training_role
==
"PSERVER"
:
if
not
current_endpoint
:
print
(
"need env SERVER_ENDPOINT"
)
exit
(
1
)
pserver_prog
=
t
.
get_pserver_program
(
current_endpoint
,
optimize_ops
)
exe
.
run
(
pserver_prog
)
elif
training_role
==
"TRAINER"
:
trainer_prog
=
t
.
get_trainer_program
()
feeder
=
fluid
.
DataFeeder
(
feed_list
=
[
data
,
label
],
place
=
place
)
for
pass_id
in
xrange
(
PASS_NUM
):
accuracy
.
reset
(
exe
)
for
data
in
train_data
():
cost_val
,
acc_val
=
exe
.
run
(
trainer_prog
,
feed
=
feeder
.
feed
(
data
),
fetch_list
=
[
cost
,
acc_out
])
pass_acc
=
accuracy
.
eval
(
exe
)
print
(
"cost="
+
str
(
cost_val
)
+
" acc="
+
str
(
acc_val
)
+
" pass_acc="
+
str
(
pass_acc
))
if
cost_val
<
1.0
and
pass_acc
>
0.8
:
exit
(
0
)
else
:
print
(
"environment var TRAINER_ROLE should be TRAINER os PSERVER"
)
if
__name__
==
'__main__'
:
main
()
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录