Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleDetection
提交
5d901416
P
PaddleDetection
项目概览
PaddlePaddle
/
PaddleDetection
1 年多 前同步成功
通知
696
Star
11112
Fork
2696
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
184
列表
看板
标记
里程碑
合并请求
40
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
184
Issue
184
列表
看板
标记
里程碑
合并请求
40
合并请求
40
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
5d901416
编写于
5月 11, 2018
作者:
Y
yangyaming
提交者:
fengjiayi
8月 31, 2018
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Enhance sequence_padding functor (CPU and GPU).
上级
fe70c69f
变更
6
隐藏空白更改
内联
并排
Showing
6 changed file
with
330 addition
and
316 deletion
+330
-316
paddle/fluid/operators/math/sequence_padding.cc
paddle/fluid/operators/math/sequence_padding.cc
+93
-110
paddle/fluid/operators/math/sequence_padding.cu
paddle/fluid/operators/math/sequence_padding.cu
+95
-136
paddle/fluid/operators/math/sequence_padding.h
paddle/fluid/operators/math/sequence_padding.h
+52
-14
paddle/fluid/operators/sequence_pad_op.cc
paddle/fluid/operators/sequence_pad_op.cc
+25
-15
paddle/fluid/operators/sequence_pad_op.h
paddle/fluid/operators/sequence_pad_op.h
+62
-39
paddle/fluid/operators/warpctc_op.h
paddle/fluid/operators/warpctc_op.h
+3
-2
未找到文件。
paddle/fluid/operators/math/sequence_padding.cc
浏览文件 @
5d901416
...
...
@@ -18,128 +18,111 @@ namespace paddle {
namespace
operators
{
namespace
math
{
template
<
typename
T
>
class
PaddingLoDTensorFunctor
<
platform
::
CPUDeviceContext
,
T
>
{
public:
void
operator
()(
const
platform
::
CPUDeviceContext
&
context
,
const
framework
::
LoDTensor
&
seq
,
framework
::
Tensor
*
padding
,
bool
norm_by_times
)
{
auto
lod
=
seq
.
lod
();
PADDLE_ENFORCE_GT
(
lod
.
size
(),
0UL
,
"The LoD of LoDTensor seq should not be null."
);
const
size_t
level
=
0
;
framework
::
LoD
abs_offset_lod
=
framework
::
ToAbsOffset
(
lod
);
auto
seq_dims
=
seq
.
dims
();
PADDLE_ENFORCE_EQ
(
seq_dims
[
0
],
static_cast
<
int64_t
>
(
abs_offset_lod
[
level
].
back
()),
"The first dimension of LoDTensor seq should be "
"equal to the sum of all sequences's length."
);
auto
padding_dims
=
padding
->
dims
();
PADDLE_ENFORCE_EQ
(
padding_dims
.
size
(),
3UL
,
"The input padding should be a 3-D Tensor of shape "
"[max_sequence_length, num_sequences, sequence_width]."
);
const
int64_t
max_sequence_length
=
MaximumSequenceLength
(
lod
,
level
);
PADDLE_ENFORCE_EQ
(
padding_dims
[
0
],
max_sequence_length
,
"The first dimension of Tensor padding should be the "
"maximum length of all sequences in LoDTensor seq."
);
const
int64_t
num_sequences
=
abs_offset_lod
[
level
].
size
()
-
1
;
PADDLE_ENFORCE_EQ
(
padding_dims
[
1
],
num_sequences
,
"The second dimension of Tensor padding should be the "
"number of sequences in LoDTensor seq."
);
const
int64_t
sequence_width
=
seq
.
numel
()
/
seq_dims
[
0
];
PADDLE_ENFORCE_EQ
(
padding_dims
[
2
],
sequence_width
,
"The third dimension of Tensor padding should be the "
"width of sequence in LoDTensor seq."
);
const
T
*
seq_data
=
seq
.
data
<
T
>
();
T
*
padding_data
=
padding
->
data
<
T
>
();
for
(
int64_t
i
=
0
;
i
<
max_sequence_length
;
++
i
)
{
for
(
int64_t
j
=
0
;
j
<
num_sequences
;
++
j
)
{
int64_t
start_pos
=
abs_offset_lod
[
level
][
j
];
int64_t
sequence_length
=
abs_offset_lod
[
level
][
j
+
1
]
-
start_pos
;
if
(
i
<
sequence_length
)
{
// i > 0 => sequence_length > 0
T
scale
=
norm_by_times
?
(
1.0
f
/
static_cast
<
T
>
(
sequence_length
))
:
1.0
f
;
for
(
int64_t
k
=
0
;
k
<
sequence_width
;
++
k
)
{
padding_data
[(
i
*
num_sequences
+
j
)
*
sequence_width
+
k
]
=
seq_data
[(
start_pos
+
i
)
*
sequence_width
+
k
]
*
scale
;
}
template
<
typename
T
,
PaddingLayout
padding_layout
>
void
CopyDataCPU
(
framework
::
LoDTensor
*
seq_tensor
,
framework
::
Tensor
*
padding_tensor
,
const
framework
::
Vector
<
size_t
>&
abs_offset
,
const
int64_t
&
max_seq_len
,
const
int64_t
&
seq_width
,
bool
seq_to_padding
,
bool
norm_by_len
)
{
T
*
seq_data
=
seq_tensor
->
data
<
T
>
();
T
*
padding_data
=
padding_tensor
->
data
<
T
>
();
int64_t
seq_num
=
abs_offset
.
size
()
-
1
;
for
(
int64_t
i
=
0
;
i
<
seq_num
;
++
i
)
{
int64_t
seq_start
=
abs_offset
[
i
];
int64_t
seq_len
=
abs_offset
[
i
+
1
]
-
seq_start
;
T
scale
=
norm_by_len
?
(
1.0
f
/
static_cast
<
T
>
(
seq_len
))
:
1.0
f
;
for
(
int64_t
j
=
0
;
j
<
seq_len
;
++
j
)
{
for
(
int64_t
k
=
0
;
k
<
seq_width
;
++
k
)
{
size_t
padding_offset
=
0
;
if
(
padding_layout
==
BATCH_LENGTH_WIDTH
)
{
padding_offset
=
(
i
*
max_seq_len
*
seq_width
)
+
j
*
seq_width
+
k
;
}
else
{
padding_offset
=
(
j
*
seq_num
*
seq_width
)
+
i
*
seq_width
+
k
;
}
if
(
seq_to_padding
)
{
padding_data
[
padding_offset
]
=
seq_data
[(
seq_start
+
j
)
*
seq_width
+
k
]
*
scale
;
}
else
{
memset
(
padding_data
+
(
i
*
num_sequences
+
j
)
*
sequence_width
,
0
,
sequence_width
*
sizeof
(
T
))
;
seq_data
[(
seq_start
+
j
)
*
seq_width
+
k
]
=
padding_data
[
padding_offset
]
*
scale
;
}
}
}
}
}
template
<
typename
T
,
PaddingLayout
padding_layout
>
class
PaddingLoDTensorFunctor
<
platform
::
CPUDeviceContext
,
T
,
padding_layout
>
{
public:
void
operator
()(
const
platform
::
CPUDeviceContext
&
context
,
const
framework
::
LoDTensor
&
seq_tensor
,
framework
::
Tensor
*
padding_tensor
,
T
padding_value
=
static_cast
<
T
>
(
0
),
bool
norm_by_times
=
false
,
size_t
lod_level
=
0
)
{
ValidateLoD
(
seq_tensor
,
lod_level
);
auto
&
lod
=
seq_tensor
.
lod
();
auto
&
abs_offset
=
framework
::
ToAbsOffset
(
lod
)[
lod_level
];
auto
seq_dims
=
seq_tensor
.
dims
();
auto
padding_dims
=
padding_tensor
->
dims
();
int64_t
max_seq_len
=
MaximumSequenceLength
(
lod
,
lod_level
);
int64_t
seq_num
=
abs_offset
.
size
()
-
1
;
int64_t
seq_width
=
seq_tensor
.
numel
()
/
seq_dims
[
0
];
int64_t
numel
=
max_seq_len
*
seq_num
*
seq_width
;
ValidateShape
(
seq_dims
,
abs_offset
.
back
(),
padding_dims
,
max_seq_len
,
seq_num
,
seq_width
,
padding_layout
);
T
*
padding_data
=
padding_tensor
->
data
<
T
>
();
memset
(
padding_data
,
padding_value
,
numel
*
sizeof
(
T
));
CopyDataCPU
<
T
,
padding_layout
>
(
const_cast
<
framework
::
LoDTensor
*>
(
&
seq_tensor
),
padding_tensor
,
abs_offset
,
max_seq_len
,
seq_width
,
true
/* seq_to_padding */
,
norm_by_times
);
}
};
template
<
typename
T
>
class
UnpaddingLoDTensorFunctor
<
platform
::
CPUDeviceContext
,
T
>
{
template
<
typename
T
,
PaddingLayout
padding_layout
>
class
UnpaddingLoDTensorFunctor
<
platform
::
CPUDeviceContext
,
T
,
padding_layout
>
{
public:
void
operator
()(
const
platform
::
CPUDeviceContext
&
context
,
framework
::
LoDTensor
*
seq
,
const
framework
::
Tensor
&
padding
,
bool
norm_by_times
)
{
auto
lod
=
seq
->
lod
();
PADDLE_ENFORCE_GT
(
lod
.
size
(),
0UL
,
"The LoD of LoDTensor seq should not be null."
);
const
size_t
level
=
0
;
framework
::
LoD
abs_offset_lod
=
framework
::
ToAbsOffset
(
lod
);
auto
seq_dims
=
seq
->
dims
();
PADDLE_ENFORCE_EQ
(
seq_dims
[
0
],
static_cast
<
int64_t
>
(
abs_offset_lod
[
level
].
back
()),
"The first dimension of LoDTensor seq should be "
"equal to the sum of all sequences's length."
);
auto
padding_dims
=
padding
.
dims
();
PADDLE_ENFORCE_EQ
(
padding_dims
.
size
(),
3UL
,
"The input padding should be a 3-D Tensor of shape "
"[max_sequnece_length, num_sequences, sequence_width]."
);
const
int64_t
max_sequence_length
=
MaximumSequenceLength
(
lod
,
level
);
PADDLE_ENFORCE_EQ
(
padding_dims
[
0
],
max_sequence_length
,
"The first dimension of Tensor padding should be "
"the maximum length of all sequences in LoDTensor seq."
);
const
int64_t
num_sequences
=
abs_offset_lod
[
level
].
size
()
-
1
;
PADDLE_ENFORCE_EQ
(
padding_dims
[
1
],
num_sequences
,
"The second dimension of Tensor padding should be "
"the number of sequences in LoDTensor seq."
);
const
int64_t
sequence_width
=
seq
->
numel
()
/
seq_dims
[
0
];
PADDLE_ENFORCE_EQ
(
padding_dims
[
2
],
sequence_width
,
"The third dimension of Tensor padding should be the "
"width of sequence in LoDTensor seq."
);
const
T
*
padding_data
=
padding
.
data
<
T
>
();
T
*
seq_data
=
seq
->
data
<
T
>
();
for
(
int64_t
i
=
0
;
i
<
num_sequences
;
++
i
)
{
int64_t
start_pos
=
abs_offset_lod
[
level
][
i
];
int64_t
sequence_length
=
abs_offset_lod
[
level
][
i
+
1
]
-
start_pos
;
for
(
int64_t
j
=
0
;
j
<
sequence_length
;
++
j
)
{
// sequence_width > j > 0
T
scale
=
norm_by_times
?
(
1.0
f
/
static_cast
<
T
>
(
sequence_length
))
:
1.0
f
;
for
(
int64_t
k
=
0
;
k
<
sequence_width
;
++
k
)
{
seq_data
[(
start_pos
+
j
)
*
sequence_width
+
k
]
=
padding_data
[(
j
*
num_sequences
+
i
)
*
sequence_width
+
k
]
*
scale
;
}
}
}
framework
::
LoDTensor
*
seq_tensor
,
const
framework
::
Tensor
&
padding_tensor
,
bool
norm_by_times
=
false
,
size_t
lod_level
=
0
)
{
ValidateLoD
(
*
seq_tensor
,
lod_level
);
auto
&
lod
=
seq_tensor
->
lod
();
auto
&
abs_offset
=
framework
::
ToAbsOffset
(
lod
)[
lod_level
];
auto
&
seq_dims
=
seq_tensor
->
dims
();
auto
&
padding_dims
=
padding_tensor
.
dims
();
int64_t
max_seq_len
=
MaximumSequenceLength
(
lod
,
lod_level
);
int64_t
seq_num
=
abs_offset
.
size
()
-
1
;
int64_t
seq_width
=
seq_tensor
->
numel
()
/
seq_dims
[
0
];
ValidateShape
(
seq_dims
,
abs_offset
.
back
(),
padding_dims
,
max_seq_len
,
seq_num
,
seq_width
,
padding_layout
);
T
*
seq_data
=
seq_tensor
->
data
<
T
>
();
memset
(
seq_data
,
static_cast
<
T
>
(
0
),
seq_tensor
->
numel
()
*
sizeof
(
T
));
CopyDataCPU
<
T
,
padding_layout
>
(
seq_tensor
,
const_cast
<
framework
::
Tensor
*>
(
&
padding_tensor
),
abs_offset
,
max_seq_len
,
seq_width
,
false
/* seq_to_padding */
,
norm_by_times
);
}
};
template
class
PaddingLoDTensorFunctor
<
platform
::
CPUDeviceContext
,
float
>;
template
class
UnpaddingLoDTensorFunctor
<
platform
::
CPUDeviceContext
,
float
>;
template
class
PaddingLoDTensorFunctor
<
platform
::
CPUDeviceContext
,
float
,
LENGTH_BATCH_WIDTH
>;
template
class
UnpaddingLoDTensorFunctor
<
platform
::
CPUDeviceContext
,
float
,
LENGTH_BATCH_WIDTH
>;
}
// namespace math
}
// namespace operators
...
...
paddle/fluid/operators/math/sequence_padding.cu
浏览文件 @
5d901416
...
...
@@ -19,87 +19,76 @@ namespace paddle {
namespace
operators
{
namespace
math
{
template
<
typename
T
,
bool
NormByTimes
,
bool
Padding
>
__global__
void
SequencePaddingKernel
(
T
*
padding
,
T
*
sequence
,
const
size_t
*
sequence_start_positions
,
const
size_t
sequence
_width
,
const
size_t
max_sequence_length
,
const
size_t
num_sequences
)
{
template
<
typename
T
,
bool
Padding
>
__global__
void
SequencePaddingKernel
(
T
*
padding_data
,
T
*
seq_data
,
const
size_t
*
abs_offset
,
const
size_t
&
seq_num
,
const
size_t
&
max_seq_len
,
const
size_t
&
seq
_width
,
const
PaddingLayout
&
padding_layout
,
bool
norm_by_times
=
false
,
const
T
&
padding_value
=
0
)
{
size_t
padding_idx
=
blockIdx
.
y
;
size_t
start_pos
=
sequence_start_positions
[
padding_idx
];
size_t
sequence_length
=
sequence_start_positions
[
padding_idx
+
1
]
-
start_pos
;
size_t
seq_start
=
abs_offset
[
padding_idx
];
size_t
seq_len
=
abs_offset
[
padding_idx
+
1
]
-
seq_start
;
size_t
sequence_idx
=
blockIdx
.
x
*
blockDim
.
y
+
threadIdx
.
y
;
size_t
padding_base_idx
=
(
sequence_idx
*
num_sequences
+
padding_idx
)
*
sequence_width
;
size_t
sequence_base_idx
=
(
start_pos
+
sequence_idx
)
*
sequence_width
;
size_t
seq_idx
=
blockIdx
.
x
*
blockDim
.
y
+
threadIdx
.
y
;
if
(
sequence_idx
<
sequence_length
)
{
T
scale
=
NormByTimes
?
(
1.0
f
/
static_cast
<
T
>
(
sequence_length
))
:
1.0
f
;
size_t
seq_offset
=
(
seq_start
+
seq_idx
)
*
seq_width
;
size_t
padding_offset
=
0
;
if
(
padding_layout
==
LENGTH_BATCH_WIDTH
)
{
padding_offset
=
(
seq_idx
*
seq_num
+
padding_idx
)
*
seq_width
;
}
else
{
padding_offset
=
(
padding_idx
*
max_seq_len
+
seq_idx
)
*
seq_width
;
}
if
(
seq_idx
<
seq_len
)
{
T
scale
=
norm_by_times
?
(
1.0
f
/
static_cast
<
T
>
(
seq_len
))
:
1.0
f
;
if
(
Padding
)
{
/* sequence -> padding */
for
(
size_t
i
=
threadIdx
.
x
;
i
<
seq
uence
_width
;
i
+=
blockDim
.
x
)
{
padding
[
padding_base_idx
+
i
]
=
scale
*
sequence
[
sequence_base_idx
+
i
];
for
(
size_t
i
=
threadIdx
.
x
;
i
<
seq_width
;
i
+=
blockDim
.
x
)
{
padding
_data
[
padding_offset
+
i
]
=
scale
*
seq_data
[
seq_offset
+
i
];
}
}
else
{
/* padding -> sequence */
for
(
size_t
i
=
threadIdx
.
x
;
i
<
seq
uence
_width
;
i
+=
blockDim
.
x
)
{
seq
uence
[
sequence_base_idx
+
i
]
=
scale
*
padding
[
padding_base_idx
+
i
];
for
(
size_t
i
=
threadIdx
.
x
;
i
<
seq_width
;
i
+=
blockDim
.
x
)
{
seq
_data
[
seq_offset
+
i
]
=
scale
*
padding_data
[
padding_offset
+
i
];
}
}
}
else
if
(
seq
uence_idx
<
max_sequence_length
)
{
}
else
if
(
seq
_idx
<
max_seq_len
)
{
if
(
Padding
)
{
/* sequence -> padding */
for
(
size_t
i
=
threadIdx
.
x
;
i
<
seq
uence
_width
;
i
+=
blockDim
.
x
)
{
padding
[
padding_base_idx
+
i
]
=
0
;
for
(
size_t
i
=
threadIdx
.
x
;
i
<
seq_width
;
i
+=
blockDim
.
x
)
{
padding
_data
[
padding_offset
+
i
]
=
padding_value
;
}
}
}
}
template
<
typename
T
>
class
PaddingLoDTensorFunctor
<
platform
::
CUDADeviceContext
,
T
>
{
template
<
typename
T
,
PaddingLayout
padding_layout
>
class
PaddingLoDTensorFunctor
<
platform
::
CUDADeviceContext
,
T
,
padding_layout
>
{
public:
void
operator
()(
const
platform
::
CUDADeviceContext
&
context
,
const
framework
::
LoDTensor
&
seq
,
framework
::
Tensor
*
padding
,
bool
norm_by_times
)
{
auto
lod
=
seq
.
lod
();
PADDLE_ENFORCE_GT
(
lod
.
size
(),
0UL
,
"The lod of LoDTensor seq should not be null."
);
const
size_t
level
=
0
;
framework
::
LoD
abs_offset_lod
=
framework
::
ToAbsOffset
(
lod
);
auto
seq_dims
=
seq
.
dims
();
PADDLE_ENFORCE_EQ
(
seq_dims
[
0
],
static_cast
<
int64_t
>
(
abs_offset_lod
[
level
].
back
()),
"The first dimension of LoDTensor seq should be "
"equal to the sum of all sequences's length."
);
auto
padding_dims
=
padding
->
dims
();
PADDLE_ENFORCE_EQ
(
padding_dims
.
size
(),
3UL
,
"The input padding should be a 3-D Tensor of shape "
"[max_sequence_length, num_sequences, sequence_width]."
);
int64_t
max_sequence_length
=
MaximumSequenceLength
(
lod
,
level
);
PADDLE_ENFORCE_EQ
(
padding_dims
[
0
],
max_sequence_length
,
"The first dimension of Tensor padding should be the "
"maximum length of all sequences in LoDTensor seq."
);
const
int64_t
num_sequences
=
abs_offset_lod
[
level
].
size
()
-
1
;
PADDLE_ENFORCE_EQ
(
padding_dims
[
1
],
num_sequences
,
"The second dimension of Tensor padding should be the "
"number of sequences in LoDTensor seq."
);
const
int64_t
sequence_width
=
seq
.
numel
()
/
seq_dims
[
0
];
PADDLE_ENFORCE_EQ
(
padding_dims
[
2
],
sequence_width
,
"The third dimension of Tensor padding should be the "
"width of sequence in LoDTensor seq."
);
if
(
!
norm_by_times
&&
num_sequences
==
1UL
)
{
TensorCopy
(
seq
,
context
.
GetPlace
(),
context
,
padding
);
padding
->
Resize
(
padding_dims
);
const
framework
::
LoDTensor
&
seq_tensor
,
framework
::
Tensor
*
padding_tensor
,
T
padding_value
=
static_cast
<
T
>
(
0
),
bool
norm_by_times
=
false
,
size_t
lod_level
=
0
)
{
ValidateLoD
(
seq_tensor
,
lod_level
);
auto
&
lod
=
seq_tensor
.
lod
();
auto
&
abs_offset
=
framework
::
ToAbsOffset
(
lod
)[
lod_level
];
auto
seq_dims
=
seq_tensor
.
dims
();
auto
padding_dims
=
padding_tensor
->
dims
();
int64_t
max_seq_len
=
MaximumSequenceLength
(
lod
,
lod_level
);
const
int64_t
seq_num
=
abs_offset
.
size
()
-
1
;
const
int64_t
seq_width
=
seq_tensor
.
numel
()
/
seq_dims
[
0
];
ValidateShape
(
seq_dims
,
abs_offset
.
back
(),
padding_dims
,
max_seq_len
,
seq_num
,
seq_width
,
padding_layout
);
if
(
!
norm_by_times
&&
seq_num
==
1UL
)
{
TensorCopy
(
seq_tensor
,
context
.
GetPlace
(),
context
,
padding_tensor
);
padding_tensor
->
Resize
(
padding_dims
);
return
;
}
...
...
@@ -109,72 +98,46 @@ class PaddingLoDTensorFunctor<platform::CUDADeviceContext, T> {
* and at least 8 elements for each thread.
*/
size_t
block_dim_x
=
std
::
min
(((((
seq
uence
_width
+
7
)
>>
3
)
+
31
)
>>
5
)
<<
5
,
kBlockSize
);
std
::
min
(((((
seq_width
+
7
)
>>
3
)
+
31
)
>>
5
)
<<
5
,
kBlockSize
);
size_t
block_dim_y
=
kBlockSize
/
block_dim_x
;
dim3
threads
(
block_dim_x
,
block_dim_y
);
size_t
grid_dim_x
=
(
max_seq
uence_length
+
block_dim_y
-
1
)
/
block_dim_y
;
size_t
grid_dim_y
=
num_sequences
;
size_t
grid_dim_x
=
(
max_seq
_len
+
block_dim_y
-
1
)
/
block_dim_y
;
size_t
grid_dim_y
=
seq_num
;
dim3
grid
(
grid_dim_x
,
grid_dim_y
);
const
T
*
seq_data
=
seq
.
data
<
T
>
();
T
*
padding_data
=
padding
->
data
<
T
>
();
if
(
norm_by_times
)
{
SequencePaddingKernel
<
T
,
1
,
1
><<<
grid
,
threads
,
0
,
context
.
stream
()
>>>
(
padding_data
,
const_cast
<
T
*>
(
seq_data
),
abs_offset_lod
[
level
].
CUDAData
(
context
.
GetPlace
()),
sequence_width
,
max_sequence_length
,
num_sequences
);
}
else
{
SequencePaddingKernel
<
T
,
0
,
1
><<<
grid
,
threads
,
0
,
context
.
stream
()
>>>
(
padding_data
,
const_cast
<
T
*>
(
seq_data
),
abs_offset_lod
[
level
].
CUDAData
(
context
.
GetPlace
()),
sequence_width
,
max_sequence_length
,
num_sequences
);
}
const
T
*
seq_data
=
seq_tensor
.
data
<
T
>
();
T
*
padding_data
=
padding_tensor
->
data
<
T
>
();
SequencePaddingKernel
<
T
,
1
><<<
grid
,
threads
,
0
,
context
.
stream
()
>>>
(
padding_data
,
const_cast
<
T
*>
(
seq_data
),
abs_offset
.
CUDAData
(
context
.
GetPlace
()),
seq_num
,
max_seq_len
,
seq_width
,
padding_layout
,
norm_by_times
,
padding_value
);
}
};
template
<
typename
T
>
class
UnpaddingLoDTensorFunctor
<
platform
::
CUDADeviceContext
,
T
>
{
template
<
typename
T
,
PaddingLayout
padding_layout
>
class
UnpaddingLoDTensorFunctor
<
platform
::
CUDADeviceContext
,
T
,
padding_layout
>
{
public:
void
operator
()(
const
platform
::
CUDADeviceContext
&
context
,
framework
::
LoDTensor
*
seq
,
const
framework
::
Tensor
&
padding
,
bool
norm_by_times
)
{
auto
lod
=
seq
->
lod
();
PADDLE_ENFORCE_GT
(
lod
.
size
(),
0UL
,
"The lod of LoDTensor seq should not be null."
);
const
size_t
level
=
0
;
framework
::
LoD
abs_offset_lod
=
framework
::
ToAbsOffset
(
lod
);
auto
seq_dims
=
seq
->
dims
();
PADDLE_ENFORCE_EQ
(
seq_dims
[
0
],
static_cast
<
int64_t
>
(
abs_offset_lod
[
level
].
back
()),
"The first dimension of LoDTensor seq should be "
"equal to the sum of all sequences's length."
);
auto
padding_dims
=
padding
.
dims
();
PADDLE_ENFORCE_EQ
(
padding_dims
.
size
(),
3UL
,
"The input padding should be a 3-D Tensor of shape "
"[max_sequnece_length, num_sequences, sequence_width]."
);
int64_t
max_sequence_length
=
MaximumSequenceLength
(
lod
,
level
);
PADDLE_ENFORCE_EQ
(
padding_dims
[
0
],
max_sequence_length
,
"The first dimension of Tensor padding should be "
"the maximum length of all sequences in LoDTensor seq."
);
const
int64_t
num_sequences
=
abs_offset_lod
[
level
].
size
()
-
1
;
PADDLE_ENFORCE_EQ
(
padding_dims
[
1
],
num_sequences
,
"The second dimension of Tensor padding should be "
"the number of sequences in LoDTensor seq."
);
const
int64_t
sequence_width
=
seq
->
numel
()
/
seq_dims
[
0
];
PADDLE_ENFORCE_EQ
(
padding_dims
[
2
],
sequence_width
,
"The third dimension of Tensor padding should be the "
"width of sequence in LoDTensor seq."
);
if
(
!
norm_by_times
&&
num_sequences
==
1UL
)
{
TensorCopy
(
padding
,
context
.
GetPlace
(),
context
,
seq
);
seq
->
Resize
(
seq_dims
);
framework
::
LoDTensor
*
seq_tensor
,
const
framework
::
Tensor
&
padding_tensor
,
bool
norm_by_times
=
false
,
size_t
lod_level
=
0
)
{
ValidateLoD
(
*
seq_tensor
,
lod_level
);
auto
&
lod
=
seq_tensor
->
lod
();
auto
&
abs_offset
=
framework
::
ToAbsOffset
(
lod
)[
lod_level
];
auto
seq_dims
=
seq_tensor
->
dims
();
auto
padding_dims
=
padding_tensor
.
dims
();
int64_t
max_seq_len
=
MaximumSequenceLength
(
lod
,
lod_level
);
int64_t
seq_num
=
abs_offset
.
size
()
-
1
;
int64_t
seq_width
=
seq_tensor
->
numel
()
/
seq_dims
[
0
];
if
(
!
norm_by_times
&&
seq_num
==
1UL
)
{
TensorCopy
(
padding_tensor
,
context
.
GetPlace
(),
context
,
seq_tensor
);
seq_tensor
->
Resize
(
seq_dims
);
return
;
}
...
...
@@ -184,32 +147,28 @@ class UnpaddingLoDTensorFunctor<platform::CUDADeviceContext, T> {
* and at least 8 elements for each thread.
*/
size_t
block_dim_x
=
std
::
min
(((((
seq
uence
_width
+
7
)
>>
3
)
+
31
)
>>
5
)
<<
5
,
kBlockSize
);
std
::
min
(((((
seq_width
+
7
)
>>
3
)
+
31
)
>>
5
)
<<
5
,
kBlockSize
);
size_t
block_dim_y
=
kBlockSize
/
block_dim_x
;
dim3
threads
(
block_dim_x
,
block_dim_y
);
size_t
grid_dim_x
=
(
max_seq
uence_length
+
block_dim_y
-
1
)
/
block_dim_y
;
size_t
grid_dim_y
=
num_sequences
;
size_t
grid_dim_x
=
(
max_seq
_len
+
block_dim_y
-
1
)
/
block_dim_y
;
size_t
grid_dim_y
=
seq_num
;
dim3
grid
(
grid_dim_x
,
grid_dim_y
);
const
T
*
padding_data
=
padding
.
data
<
T
>
();
T
*
seq_data
=
seq
->
data
<
T
>
();
if
(
norm_by_times
)
{
SequencePaddingKernel
<
T
,
1
,
0
><<<
grid
,
threads
,
0
,
context
.
stream
()
>>>
(
const_cast
<
T
*>
(
padding_data
),
seq_data
,
abs_offset_lod
[
level
].
CUDAData
(
context
.
GetPlace
()),
sequence_width
,
max_sequence_length
,
num_sequences
);
}
else
{
SequencePaddingKernel
<
T
,
0
,
0
><<<
grid
,
threads
,
0
,
context
.
stream
()
>>>
(
const_cast
<
T
*>
(
padding_data
),
seq_data
,
abs_offset_lod
[
level
].
CUDAData
(
context
.
GetPlace
()),
sequence_width
,
max_sequence_length
,
num_sequences
);
}
const
T
*
padding_data
=
padding_tensor
.
data
<
T
>
();
T
*
seq_data
=
seq_tensor
->
data
<
T
>
();
SequencePaddingKernel
<
T
,
1
><<<
grid
,
threads
,
0
,
context
.
stream
()
>>>
(
const_cast
<
T
*>
(
padding_data
),
seq_data
,
abs_offset
.
CUDAData
(
context
.
GetPlace
()),
seq_num
,
max_seq_len
,
seq_width
,
padding_layout
,
norm_by_times
);
}
};
template
class
PaddingLoDTensorFunctor
<
platform
::
CUDADeviceContext
,
float
>;
template
class
UnpaddingLoDTensorFunctor
<
platform
::
CUDADeviceContext
,
float
>;
template
class
PaddingLoDTensorFunctor
<
platform
::
CUDADeviceContext
,
float
,
LENGTH_BATCH_WIDTH
>;
template
class
UnpaddingLoDTensorFunctor
<
platform
::
CUDADeviceContext
,
float
,
LENGTH_BATCH_WIDTH
>;
}
// namespace math
}
// namespace operators
...
...
paddle/fluid/operators/math/sequence_padding.h
浏览文件 @
5d901416
...
...
@@ -22,17 +22,50 @@ namespace paddle {
namespace
operators
{
namespace
math
{
enum
PaddingLayout
{
BATCH_LENGTH_WIDTH
,
LENGTH_BATCH_WIDTH
};
inline
static
size_t
MaximumSequenceLength
(
const
framework
::
LoD
&
lod
,
const
size_t
level
)
{
const
size_t
num_sequences
=
lod
[
level
].
size
()
-
1
;
size_t
max_sequence_length
=
0
;
framework
::
LoD
abs_offset_lod
=
framework
::
ToAbsOffset
(
lod
);
for
(
size_t
i
=
0
;
i
<
num_sequences
;
++
i
)
{
max_sequence_length
=
std
::
max
(
max_sequence_length
,
abs_offset_lod
[
level
][
i
+
1
]
-
abs_offset_lod
[
level
][
i
]);
const
size_t
seq_num
=
lod
[
level
].
size
()
-
1
;
size_t
max_seq_len
=
0
;
auto
abs_offset
=
framework
::
ToAbsOffset
(
lod
)[
level
];
for
(
size_t
i
=
0
;
i
<
seq_num
;
++
i
)
{
max_seq_len
=
std
::
max
(
max_seq_len
,
abs_offset
[
i
+
1
]
-
abs_offset
[
i
]);
}
return
max_seq_len
;
}
inline
static
void
ValidateLoD
(
const
framework
::
LoDTensor
&
seq_tensor
,
const
size_t
&
lod_level
)
{
PADDLE_ENFORCE
(
lod_level
<
seq_tensor
.
lod
().
size
(),
"Invalid `lod_level` which should be at least 0 and less "
"than maximum lod level of `seq_tensor`."
);
}
inline
static
void
ValidateShape
(
const
framework
::
DDim
&
seq_tensor_dims
,
const
size_t
&
abs_offset_back_value
,
const
framework
::
DDim
&
padding_tensor_dims
,
const
int64_t
&
max_seq_len
,
const
int64_t
&
seq_num
,
const
int64_t
&
seq_width
,
const
PaddingLayout
&
padding_layout
)
{
PADDLE_ENFORCE_EQ
(
static_cast
<
size_t
>
(
seq_tensor_dims
[
0
]),
abs_offset_back_value
,
"The 1st dimension of `seq_tensor` should be equal to "
"sum of lengths of all sequences."
);
PADDLE_ENFORCE_EQ
(
padding_tensor_dims
.
size
(),
3UL
,
"`padding_tensor` should be a 3-D tensor."
);
if
(
padding_layout
==
BATCH_LENGTH_WIDTH
)
{
PADDLE_ENFORCE_EQ
(
padding_tensor_dims
,
framework
::
make_ddim
({
seq_num
,
max_seq_len
,
seq_width
}));
}
else
if
(
padding_layout
==
LENGTH_BATCH_WIDTH
)
{
PADDLE_ENFORCE_EQ
(
padding_tensor_dims
,
framework
::
make_ddim
({
max_seq_len
,
seq_num
,
seq_width
}));
}
else
{
PADDLE_THROW
(
"Unsupported padding layout."
);
}
return
max_sequence_length
;
}
/*
...
...
@@ -61,18 +94,23 @@ inline static size_t MaximumSequenceLength(const framework::LoD& lod,
*
* \note transposition is also done in this functor.
*/
template
<
typename
DeviceContext
,
typename
T
>
template
<
typename
DeviceContext
,
typename
T
,
PaddingLayout
padding_layout
>
class
PaddingLoDTensorFunctor
{
public:
void
operator
()(
const
DeviceContext
&
context
,
const
framework
::
LoDTensor
&
seq
,
framework
::
Tensor
*
padding
,
bool
norm_by_times
);
void
operator
()(
const
DeviceContext
&
context
,
const
framework
::
LoDTensor
&
seq_tensor
,
framework
::
Tensor
*
padding_tensor
,
T
padding_value
=
static_cast
<
T
>
(
0
),
bool
norm_by_times
=
false
,
size_t
lod_level
=
0
);
};
template
<
typename
DeviceContext
,
typename
T
>
template
<
typename
DeviceContext
,
typename
T
,
PaddingLayout
padding_layout
>
class
UnpaddingLoDTensorFunctor
{
public:
void
operator
()(
const
DeviceContext
&
context
,
framework
::
LoDTensor
*
seq
,
const
framework
::
Tensor
&
padding
,
bool
norm_by_times
);
void
operator
()(
const
DeviceContext
&
context
,
framework
::
LoDTensor
*
seq_tensor
,
const
framework
::
Tensor
&
padding_tensor
,
bool
norm_by_times
=
false
,
size_t
lod_level
=
0
);
};
}
// namespace math
...
...
paddle/fluid/operators/sequence_pad_op.cc
浏览文件 @
5d901416
...
...
@@ -32,7 +32,11 @@ class SequencePadOp : public framework::OperatorWithKernel {
PADDLE_ENFORCE_EQ
(
x_dims
.
size
(),
2
,
"Only support 2-D tensor, rank of Input(X) should be 2."
);
auto
out_dims
=
x_dims
;
int
lod_level
=
ctx
->
Attrs
().
Get
<
int
>
(
"lod_level"
);
int64_t
max_len
=
-
1
;
int64_t
seq_num
=
-
1
;
int
x_lod_size
=
-
1
;
if
(
ctx
->
IsRuntime
())
{
framework
::
Variable
*
x_var
=
...
...
@@ -40,27 +44,31 @@ class SequencePadOp : public framework::OperatorWithKernel {
auto
&
x_lod
=
x_var
->
Get
<
LoDTensor
>
().
lod
();
PADDLE_ENFORCE_GE
(
x_lod
.
size
(),
1
,
"Input(X) should be sequences containing lod."
);
x_lod_size
=
x_lod
.
size
();
auto
x_abs_offset
=
framework
::
ToAbsOffset
(
x_lod
)[
lod_level
];
PADDLE_ENFORCE_EQ
(
x_dims
[
0
],
static_cast
<
int64_t
>
(
x_abs_offset
.
back
()),
"The first dimension of `X` should be equal to sum "
"of all sequences' length."
);
auto
last_level_lod
=
x_lod
[
x_lod
.
size
()
-
1
];
size_t
max_len
=
0
;
seq_num
=
x_abs_offset
.
size
()
-
1
;
for
(
size_t
i
=
1
;
i
<
last_level_lod
.
size
()
;
++
i
)
{
auto
seq_len
=
last_level_lod
[
i
]
-
last_level_lod
[
i
-
1
];
for
(
size_t
i
=
1
;
i
<
=
seq_num
;
++
i
)
{
int64_t
seq_len
=
x_abs_offset
[
i
]
-
x_abs_offset
[
i
-
1
];
max_len
=
max_len
<
seq_len
?
seq_len
:
max_len
;
}
out_dims
[
0
]
=
max_len
*
(
last_level_lod
.
size
()
-
1
);
}
else
{
framework
::
VarDesc
*
x_desc
=
boost
::
get
<
framework
::
VarDesc
*>
(
ctx
->
GetInputVarPtrs
(
"X"
)[
0
]);
PADDLE_ENFORCE_GE
(
x_desc
->
GetLoDLevel
(),
1
,
"Input(X) should be sequences containing lod."
);
out_dims
[
0
]
=
-
1
;
x_lod_size
=
x_desc
->
GetLoDLevel
();
}
ctx
->
SetOutputDim
(
"Out"
,
out_dims
);
PADDLE_ENFORCE
(
lod_level
>=
0
&&
lod_level
<
x_lod_size
,
"Invalid `lod_level` which should be at least 0 and less "
"than maximum lod level of `X`"
);
ctx
->
SetOutputDim
(
"Out"
,
{
seq_num
,
max_len
,
x_dims
[
1
]});
}
protected:
...
...
@@ -84,9 +92,11 @@ class SequencePadOpMaker : public framework::OpProtoAndCheckerMaker {
"(Tensor) Output variable which would be a common tensor "
"without lod. Each sequence would be padded to the maximum "
"length."
);
AddAttr
<
float
>
(
"lod_level"
,
"(int, default 0) Specify which level lod to referred to."
);
AddAttr
<
float
>
(
"pad_value"
,
"(float, default 0.0)
Value to be padded
"
"t
o t
he end of each sequence."
);
"(float, default 0.0)
Specify which value to be padded to
"
"the end of each sequence."
);
AddComment
(
R"DOC(
)DOC"
);
...
...
paddle/fluid/operators/sequence_pad_op.h
浏览文件 @
5d901416
...
...
@@ -16,6 +16,7 @@ limitations under the License. */
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/memory/memcpy.h"
#include "paddle/fluid/operators/math/math_function.h"
#include "paddle/fluid/operators/math/sequence_padding.h"
namespace
paddle
{
namespace
operators
{
...
...
@@ -23,39 +24,68 @@ namespace operators {
using
LoDTensor
=
framework
::
LoDTensor
;
using
LoD
=
framework
::
LoD
;
// @TODO clean code
template
<
typename
DeviceContext
,
typename
T
>
struct
CopyFunctor
{
LoDTensor
*
lod_tensor_
;
LoDTensor
*
pad_tensor_
;
const
LoD
&
ref_lod_
;
const
DeviceContext
&
ctx_
;
bool
is_lod_to_pad_
;
CopyFunctor
(
LoDTensor
*
lod_tensor
,
const
LoD
&
ref_lod
,
LoDTensor
*
pad_tensor
,
const
DeviceContext
&
ctx
,
bool
is_lod_to_pad
)
:
lod_tensor_
(
lod_tensor
),
pad_tensor_
(
pad_tensor
),
ref_lod_
(
ref_lod
),
ctx_
(
ctx
),
is_lod_to_pad_
(
is_lod_to_pad
)
{}
void
operator
()()
const
{
/*
auto seq_num = ref_lod_.size() - 1;
auto max_len = pad_tensor_->dims()[0] / seq_num;
PADDLE_ENFORCE_EQ(max_len * seq_num, pad_tensor_->dims()[0],
"First dimension of padded tensor should be equal to "
"maximum sequence length mulplied by sequence number.");
for (size_t i = 1; i < ref_lod_.size(); ++i) {
auto seq_start = ref_lod_[i - 1];
auto seq_end = ref_lod_[i];
auto pad_start = (i - 1) * max_len;
auto pad_end = pad_start + (seq_end - seq_start);
auto sub_lod_tensor = lod_tensor_->Slice(seq_start, seq_end);
auto sub_pad_tensor = pad_tensor_->Slice(pad_start, pad_end);
if (is_lod_to_pad_) {
framework::TensorCopy(sub_lod_tensor, ctx.GetPlace(), &sub_pad_tensor);
} else {
framework::TensorCopy(sub_pad_tensor, ctx.GetPlace(), &sub_lod_tensor);
}
}
*/
}
};
template
<
typename
DeviceContext
,
typename
T
>
class
SequencePadOpKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
auto
*
x_ptr
=
ctx
.
Input
<
LoDTensor
>
(
"X"
);
/*
auto* x = ctx.Input<LoDTensor>("X");
auto* out_ptr = ctx.Output<LoDTensor>("Out");
out_ptr->mutable_data<T>(ctx.GetPlace());
// Resize();
T pad_value = static_cast<T>(ctx.Attr<float>("pad_value"));
math::PaddingLoDTensorFunctor<DeviceContext, T>()(
ctx.template device_context<DeviceContext>(), *x, *, false);
math::SetConstant<DeviceContext, T> set_func;
set_func(ctx.template device_context<DeviceContext>(), out_ptr, pad_value);
auto
&
x_lod
=
x_ptr
->
lod
();
auto
&
x_last_level_lod
=
x_lod
[
x_lod
.
size
()
-
1
];
auto
seq_num
=
x_last_level_lod
.
size
()
-
1
;
auto
max_len
=
out_ptr
->
dims
()[
0
]
/
seq_num
;
PADDLE_ENFORCE_EQ
(
max_len
*
seq_num
,
out_ptr
->
dims
()[
0
],
"First dimension of `Out` should be equal to "
"maximum length mulplied by sequence number."
);
for
(
size_t
i
=
1
;
i
<
x_last_level_lod
.
size
();
++
i
)
{
auto
x_start
=
x_last_level_lod
[
i
-
1
];
auto
x_end
=
x_last_level_lod
[
i
];
auto
out_start
=
(
i
-
1
)
*
max_len
;
auto
out_end
=
out_start
+
(
x_end
-
x_start
);
auto
x_sub_tensor
=
x_ptr
->
Slice
(
x_start
,
x_end
);
auto
out_sub_tensor
=
out_ptr
->
Slice
(
out_start
,
out_end
);
framework
::
TensorCopy
(
x_sub_tensor
,
ctx
.
GetPlace
(),
&
out_sub_tensor
);
}
*/
}
};
...
...
@@ -63,33 +93,26 @@ template <typename DeviceContext, typename T>
class
SequencePadGradOpKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
/*
auto* x_ptr = ctx.Input<LoDTensor>("X");
auto* g_out_ptr = ctx.Input<LoDTensor>(framework::GradVarName("Out"));
auto* g_x_ptr = ctx.Output<LoDTensor>(framework::GradVarName("X"));
math::SetConstant<DeviceContext, T> set_func;
set_func
(
ctx
.
template
device_context
<
DeviceContext
>(),
g_x_ptr
,
set_func(ctx.template device_context<DeviceContext>(),
g_x_ptr,
static_cast<T>(0));
auto& x_lod = x_ptr->lod();
auto& x_last_level_lod = x_lod[x_lod.size() - 1];
auto
seq_num
=
x_last_level_lod
.
size
()
-
1
;
int64_t
max_len
=
g_out_ptr
->
dims
()[
0
]
/
seq_num
;
PADDLE_ENFORCE_EQ
(
max_len
*
seq_num
,
g_out_ptr
->
dims
()[
0
],
"First dimension of `Out` should be equal to "
"maximum length mulplied by sequence number."
);
for
(
size_t
i
=
1
;
i
<
x_last_level_lod
.
size
();
++
i
)
{
auto
x_start
=
x_last_level_lod
[
i
-
1
];
auto
x_end
=
x_last_level_lod
[
i
];
auto
out_start
=
(
i
-
1
)
*
max_len
;
auto
out_end
=
out_start
+
(
x_end
-
x_start
);
auto
g_out_sub
=
g_out_ptr
->
Slice
(
out_start
,
out_end
);
auto
g_x_sub
=
g_x_ptr
->
Slice
(
x_start
,
x_end
);
framework
::
TensorCopy
(
g_x_sub
,
ctx
.
GetPlace
(),
&
g_out_sub
);
}
CopyFunctor copy_func<DeviceContext, T>(g_out_ptr,
x_last_level_lod,
g_x_ptr,
ctx,
false);
copy_func();
*/
}
};
...
...
paddle/fluid/operators/warpctc_op.h
浏览文件 @
5d901416
...
...
@@ -161,7 +161,7 @@ class WarpCTCKernel : public framework::OpKernel<T> {
static_cast
<
int64_t
>
(
num_sequences
),
static_cast
<
int64_t
>
(
sequence_width
)});
warpctc_logits
.
mutable_data
<
T
>
(
warpctc_logits_dims
,
ctx
.
GetPlace
());
math
::
PaddingLoDTensorFunctor
<
DeviceContext
,
T
>
()(
math
::
PaddingLoDTensorFunctor
<
DeviceContext
,
T
,
math
::
LENGTH_BATCH_WIDTH
>
()(
ctx
.
template
device_context
<
DeviceContext
>(),
*
logits
,
&
warpctc_logits
,
false
);
const
T
*
warpctc_logits_data
=
warpctc_logits
.
data
<
T
>
();
...
...
@@ -215,7 +215,8 @@ class WarpCTCGradKernel : public framework::OpKernel<T> {
logits_grad
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
bool
norm_by_times
=
ctx
.
Attr
<
bool
>
(
"norm_by_times"
);
math
::
UnpaddingLoDTensorFunctor
<
DeviceContext
,
T
>
()(
math
::
UnpaddingLoDTensorFunctor
<
DeviceContext
,
T
,
math
::
LENGTH_BATCH_WIDTH
>
()(
ctx
.
template
device_context
<
DeviceContext
>(),
logits_grad
,
*
warpctc_grad
,
norm_by_times
);
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录