提交 5d2b3fb0 编写于 作者: F fengjiayi

Merge branch 'develop' of https://github.com/PaddlePaddle/Paddle into dev_add_FillZerosLikeOp_test

......@@ -24,7 +24,7 @@
description: Format files with ClangFormat.
entry: clang-format -i
language: system
files: \.(c|cc|cxx|cpp|h|hpp|hxx)$
files: \.(c|cc|cxx|cpp|cu|h|hpp|hxx|proto)$
- repo: https://github.com/PaddlePaddle/pre-commit-golang
sha: 8337620115c25ff8333f1b1a493bd031049bd7c0
hooks:
......
......@@ -36,8 +36,8 @@ include(simd)
################################ Configurations #######################################
option(WITH_GPU "Compile PaddlePaddle with NVIDIA GPU" ${CUDA_FOUND})
option(WITH_AVX "Compile PaddlePaddle with AVX intrinsics" ${AVX_FOUND})
option(WITH_MKLDNN "Compile PaddlePaddle with mkl-dnn support." OFF)
option(WITH_MKLML "Compile PaddlePaddle with mklml package." OFF)
option(WITH_MKLDNN "Compile PaddlePaddle with mkl-dnn support." ${AVX_FOUND})
option(WITH_MKLML "Compile PaddlePaddle with mklml package." ${AVX_FOUND})
option(WITH_DSO "Compile PaddlePaddle with dynamic linked CUDA" ON)
option(WITH_TESTING "Compile PaddlePaddle with unit testing" ON)
option(WITH_SWIG_PY "Compile PaddlePaddle with inference api" ON)
......
......@@ -27,13 +27,16 @@ RUN apt-get update && \
git python-pip python-dev openssh-server bison \
wget unzip unrar tar xz-utils bzip2 gzip coreutils ntp \
curl sed grep graphviz libjpeg-dev zlib1g-dev \
python-numpy python-matplotlib gcc-4.8 g++-4.8 \
python-matplotlib gcc-4.8 g++-4.8 \
automake locales clang-format-3.8 swig doxygen cmake \
liblapack-dev liblapacke-dev libboost-dev \
clang-3.8 llvm-3.8 libclang-3.8-dev \
net-tools && \
apt-get clean -y
# paddle is using numpy.flip, which is introduced since 1.12.0
RUN pip --no-cache-dir install 'numpy>=1.12.0'
# Install Go and glide
RUN wget -O go.tgz https://storage.googleapis.com/golang/go1.8.1.linux-amd64.tar.gz && \
tar -C /usr/local -xzf go.tgz && \
......
......@@ -74,8 +74,6 @@ if(WITH_MKLDNN)
set(OPENMP_FLAGS "-fopenmp")
set(CMAKE_C_CREATE_SHARED_LIBRARY_FORBIDDEN_FLAGS ${OPENMP_FLAGS})
set(CMAKE_CXX_CREATE_SHARED_LIBRARY_FORBIDDEN_FLAGS ${OPENMP_FLAGS})
set(CMAKE_SHARED_LINKER_FLAGS "${CMAKE_SHARED_LINKER_FLAGS} -L${MKLDNN_IOMP_DIR} -liomp5 -Wl,--as-needed")
set(CMAKE_EXE_LINKER_FLAGS "${CMAKE_EXE_LINKER_FLAGS} -L${MKLDNN_IOMP_DIR} -liomp5 -Wl,--as-needed")
set(CMAKE_C_FLAGS "${CMAKE_C_FLAGS} ${OPENMP_FLAGS}")
set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} ${OPENMP_FLAGS}")
else()
......
......@@ -42,26 +42,21 @@ macro(add_style_check_target TARGET_NAME)
if(WITH_STYLE_CHECK)
set(SOURCES_LIST ${ARGN})
list(REMOVE_DUPLICATES SOURCES_LIST)
list(SORT SOURCES_LIST)
foreach(filename ${SOURCES_LIST})
set(LINT ON)
foreach(pattern ${IGNORE_PATTERN})
if(filename MATCHES ${pattern})
message(STATUS "DROP LINT ${filename}")
set(LINT OFF)
list(REMOVE_ITEM SOURCES_LIST ${filename})
endif()
endforeach()
if(LINT MATCHES ON)
# cpplint code style
get_filename_component(base_filename ${filename} NAME)
set(CUR_GEN ${CMAKE_CURRENT_BINARY_DIR}/${base_filename}.cpplint)
add_custom_command(TARGET ${TARGET_NAME} PRE_BUILD
COMMAND "${PYTHON_EXECUTABLE}" "${PROJ_ROOT}/paddle/scripts/cpplint.py"
"--filter=${STYLE_FILTER}"
"--write-success=${CUR_GEN}" ${filename}
WORKING_DIRECTORY ${CMAKE_CURRENT_SOURCE_DIR})
endif()
endforeach()
if(SOURCES_LIST)
add_custom_command(TARGET ${TARGET_NAME} POST_BUILD
COMMAND "${PYTHON_EXECUTABLE}" "${PROJ_ROOT}/paddle/scripts/cpplint.py"
"--filter=${STYLE_FILTER}"
${SOURCES_LIST}
COMMENT "cpplint: Checking source code style"
WORKING_DIRECTORY ${CMAKE_CURRENT_SOURCE_DIR})
endif()
endif()
endmacro()
......@@ -7,7 +7,7 @@ INCLUDE_DIRECTORIES(${ANY_SOURCE_DIR}/src/extern_lib_any)
ExternalProject_Add(
extern_lib_any
${EXTERNAL_PROJECT_LOG_ARGS}
GIT_REPOSITORY "https://github.com/thelink2012/any.git"
GIT_REPOSITORY "https://github.com/PaddlePaddle/any.git"
GIT_TAG "8fef1e93710a0edf8d7658999e284a1142c4c020"
PREFIX ${ANY_SOURCE_DIR}
UPDATE_COMMAND ""
......
......@@ -28,7 +28,14 @@ INCLUDE_DIRECTORIES(${GFLAGS_INCLUDE_DIR})
ExternalProject_Add(
extern_gflags
${EXTERNAL_PROJECT_LOG_ARGS}
GIT_REPOSITORY "https://github.com/gflags/gflags.git"
# TODO(yiwang): The annoying warnings mentioned in
# https://github.com/PaddlePaddle/Paddle/issues/3277 are caused by
# gflags. I fired a PR https://github.com/gflags/gflags/pull/230
# to fix it. Before it gets accepted by the gflags team, we use
# my personal fork, which contains above fix, temporarily. Let's
# change this back to the official Github repo once my PR is
# merged.
GIT_REPOSITORY "https://github.com/wangkuiyi/gflags.git"
PREFIX ${GFLAGS_SOURCES_DIR}
UPDATE_COMMAND ""
CMAKE_ARGS -DCMAKE_CXX_COMPILER=${CMAKE_CXX_COMPILER}
......
......@@ -69,8 +69,13 @@ ENDIF(NOT ${CBLAS_FOUND})
MESSAGE(STATUS "BLAS library: ${CBLAS_LIBRARIES}")
INCLUDE_DIRECTORIES(${CBLAS_INC_DIR})
ADD_LIBRARY(cblas STATIC IMPORTED)
SET_PROPERTY(TARGET cblas PROPERTY IMPORTED_LOCATION ${CBLAS_LIBRARIES})
# FIXME(gangliao): generate cblas target to track all high performance
# linear algebra libraries for cc_library(xxx SRCS xxx.c DEPS cblas)
SET(dummyfile ${CMAKE_CURRENT_BINARY_DIR}/cblas_dummy.c)
FILE(WRITE ${dummyfile} "const char * dummy = \"${dummyfile}\";")
ADD_LIBRARY(cblas STATIC ${dummyfile})
TARGET_LINK_LIBRARIES(cblas ${CBLAS_LIBRARIES})
IF(NOT ${CBLAS_FOUND})
ADD_DEPENDENCIES(cblas extern_openblas)
LIST(APPEND external_project_dependencies cblas)
......
......@@ -24,7 +24,6 @@ IF(WITH_PYTHON)
ENDIF(WITH_PYTHON)
SET(py_env "")
SET(USE_VIRTUALENV_FOR_TEST 1)
IF(PYTHONINTERP_FOUND)
find_python_module(pip REQUIRED)
find_python_module(numpy REQUIRED)
......
......@@ -115,7 +115,7 @@ set(COMMON_FLAGS
-Wno-error=literal-suffix
-Wno-error=sign-compare
-Wno-error=unused-local-typedefs
-Wno-error=parentheses-equality # Warnings in Pybind11
-Wno-error=parentheses-equality # Warnings in pybind11
)
set(GPU_COMMON_FLAGS
......@@ -195,6 +195,7 @@ endif()
# Modern gpu architectures: Pascal
if (CUDA_VERSION VERSION_GREATER "8.0" OR CUDA_VERSION VERSION_EQUAL "8.0")
list(APPEND __arch_flags " -gencode arch=compute_60,code=sm_60")
list(APPEND CUDA_NVCC_FLAGS --expt-relaxed-constexpr)
endif()
# Custom gpu architecture
......
......@@ -403,3 +403,16 @@ function(py_proto_compile TARGET_NAME)
protobuf_generate_python(py_srcs ${py_proto_compile_SRCS})
add_custom_target(${TARGET_NAME} ALL DEPENDS ${py_srcs})
endfunction()
function(py_test TARGET_NAME)
if(WITH_TESTING)
set(options STATIC static SHARED shared)
set(oneValueArgs "")
set(multiValueArgs SRCS DEPS)
cmake_parse_arguments(py_test "${options}" "${oneValueArgs}" "${multiValueArgs}" ${ARGN})
add_test(NAME ${TARGET_NAME}
COMMAND env PYTHONPATH=${PADDLE_PYTHON_PACKAGE_DIR}
python2 ${py_test_SRCS}
WORKING_DIRECTORY ${CMAKE_CURRENT_SOURCE_DIR})
endif()
endfunction()
......@@ -118,7 +118,6 @@ endfunction()
macro(add_unittest_without_exec TARGET_NAME)
add_executable(${TARGET_NAME} ${ARGN})
link_paddle_test(${TARGET_NAME})
add_style_check_target(${TARGET_NAME} ${ARGN})
endmacro()
# add_unittest
......@@ -150,9 +149,12 @@ endfunction()
# Create a python unittest using run_python_tests.sh,
# which takes care of making correct running environment
function(add_python_test TEST_NAME)
add_test(NAME ${TEST_NAME}
COMMAND env PADDLE_PACKAGE_DIR=${PADDLE_PYTHON_PACKAGE_DIR}
bash ${PROJ_ROOT}/paddle/scripts/run_python_tests.sh
${USE_VIRTUALENV_FOR_TEST} ${PYTHON_EXECUTABLE} ${ARGN}
WORKING_DIRECTORY ${CMAKE_CURRENT_SOURCE_DIR})
foreach(arg ${ARGN})
get_filename_component(py_fn ${arg} NAME_WE)
set(TRG_NAME ${TEST_NAME}_${py_fn})
add_test(NAME ${TRG_NAME}
COMMAND env PYTHONPATH=${PADDLE_PYTHON_PACKAGE_DIR}
python2 ${arg}
WORKING_DIRECTORY ${CMAKE_CURRENT_SOURCE_DIR})
endforeach()
endfunction()
# Intel® MKL-DNN on PaddlePaddle: Design Doc
我们计划将Intel深度神经网络数学库(**MKL-DNN**\[[1](#references)\])集成到PaddlePaddle,充分展现英特尔平台的优势,有效提升PaddlePaddle在英特尔架构上的性能。
我们短期内的基本目标是:
- 完成常用layer的MKL-DNN实现。
- 完成常见深度神经网络VGG,GoogLeNet 和 ResNet的MKL-DNN实现。
## Contents
- [Overview](#overview)
- [Actions](#actions)
- [CMake](#cmake)
- [Layers](#layers)
- [Activations](#activations)
- [Unit Tests](#unit-tests)
- [Protobuf Messages](#protobuf-messages)
- [Python API](#python-api)
- [Demos](#demos)
- [Benchmarking](#benchmarking)
- [Others](#others)
- [Design Concerns](#design-concerns)
## Overview
我们会把MKL-DNN作为第三方库集成进PaddlePaddle,整体框架图
<div align="center">
<img src="image/overview.png" width=350><br/>
Figure 1. PaddlePaddle on IA.
</div>
## Actions
我们把集成方案大致分为了如下几个方面。
### CMake
我们会在`CMakeLists.txt`中会添加`WITH_MKLDNN`的选项,当设置这个值为`ON`的时候会启用编译MKL-DNN功能。同时会自动开启OpenMP用于提高MKL-DNN的性能。
同时,我们会引入`WITH_MKLML`选项,用于选择是否使用MKL-DNN自带的MKLML安装包。这个安装包可以独立于MKL-DNN使用,但是建议在开启MKL-DNN的同时也打开MKLML的开关,这样才能发挥最好的性能。
所以,我们会在`cmake/external`目录新建`mkldnn.cmake``mklml.cmake`文件,它们会在编译PaddlePaddle的时候下载对应的软件包,并放到PaddlePaddle的third party目录中。
**备注**:当`WITH_MKLML=ON`的时候,会优先使用这个包作为PaddlePaddle的CBLAS和LAPACK库,所以会稍微改动`cmake/cblas.cmake`中的逻辑。
### Layers
所有MKL-DNN相关的C++ layers,都会按照PaddlePaddle的目录结构存放在
`paddle/gserver/layers`中,并且文件名都会一以*Mkldnn*开头。
所有MKL-DNN的layers都会继承于一个叫做`MkldnnLayer`的父类,该父类继承于PaddlePaddle的基类`Layer`
### Activations
由于在PaddlePaddle中,激活函数是独立于layer概念的,所以会在`paddle/gserver/activations`目录下添加一个`MkldnnActivation.h`文件定义一些用于MKL-DNN的接口,实现方法还是会在`ActivationFunction.cpp`文件。
### Unit Tests
会在`paddle/gserver/test`目录下添加`test_Mkldnn.cpp``MkldnnTester.*`用于MKL-DNN的测试。
Activation的测试,计划在PaddlePaddle原有的测试文件上直接添加新的测试type。
### Protobuf Messages
根据具体layer的需求可能会在`proto/ModelConfig.proto`里面添加必要的选项。
### Python API
目前只考虑**v1 API**
计划在`python/paddle/trainer/config_parser.py`里面添加`use_mkldnn`这个选择,方便用户选择使用MKL-DNN的layers。
具体实现方式比如:
```python
use_mkldnn = bool(int(g_command_config_args.get("use_mkldnn", 0)))
if use_mkldnn
self.layer_type = mkldnn_*
```
所有MKL-DNN的layer type会以*mkldnn_*开头,以示区分。
并且可能在`python/paddle/trainer_config_helper`目录下的`activations.py ``layers.py`里面添加必要的MKL-DNN的接口。
### Demos
会在`v1_api_demo`目录下添加一个`mkldnn`的文件夹,里面放入一些用于MKL-DNN测试的demo脚本。
### Benchmarking
会考虑添加部分逻辑在`benchmark/paddle/image/run.sh`,添加使用MKL-DNN的测试。
### Others
1. 如果在使用MKL-DNN的情况下,会把CPU的Buffer对齐为64。
2. 深入PaddlePaddle,寻找有没有其他可以优化的可能,进一步优化。比如可能会用OpenMP改进SGD的更新性能。
## Design Concerns
为了更好的符合PaddlePaddle的代码风格\[[2](#references)\],同时又尽可能少的牺牲MKL-DNN的性能\[[3](#references)\]
我们总结出一些特别需要注意的点:
1. 使用**deviceId_**。为了尽可能少的在父类Layer中添加变量或者函数,我们决定使用已有的`deviceId_`变量来区分layer的属性,定义`-2``MkldnnLayer`特有的设备ID。
2. 重写父类Layer的**init**函数,修改`deviceId_``-2`,代表这个layer是用于跑在MKL-DNN的环境下。
3. 创建`MkldnnMatrix`,用于管理MKL-DNN会用到的相关memory函数、接口以及会用的到格式信息。
4. 创建`MkldnnBase`,定义一些除了layer和memory相关的类和函数。包括MKL-DNN会用到`MkldnnStream``CpuEngine`,和未来可能还会用到`FPGAEngine`等。
5.**Argument**里添加两个`MkldnnMatrixPtr`,取名为`mkldnnValue``mkldnnGrad`,用于存放`MkldnnLayer`会用到的memory buffer。 并且添加函数cvt(会修改为一个更加合适的函数名),用于处理"CPU device"和"MKL-DNN device"之间memory的相互转化。
6. 在父类`Layer`中的`getOutput`函数中添加一段逻辑,用于判断`deviceId`,并针对device在MKL-DNN和CPU之间不统一的情况,做一个前期转换。 也就是调用`Argument`的cvt函数把output统一到需要的device上。
7. 在原来的`FLAGS`中添加一个`use_mkldnn`的flag,用于选择是否使用MKL-DNN的相关功能。
## References
1. [Intel Math Kernel Library for Deep Neural Networks (Intel MKL-DNN)](https://github.com/01org/mkl-dnn "Intel MKL-DNN")
2. [原来的方案](https://github.com/PaddlePaddle/Paddle/pull/3096)会引入**nextLayer**的信息。但是在PaddlePaddle中,无论是重构前的layer还是重构后的op,都不会想要知道next layer/op的信息。
3. MKL-DNN的高性能格式与PaddlePaddle原有的`NCHW`不同(PaddlePaddle中的CUDNN部分使用的也是`NCHW`,所以不存在这个问题),所以需要引入一个转换方法,并且只需要在必要的时候转换这种格式,才能更好的发挥MKL-DNN的性能。
......@@ -21,22 +21,15 @@
#
# It same as PYTHONPATH=${YOUR_PYTHON_PATH}:$PYTHONPATH {exec...}
#
if ! python -c "import paddle" >/dev/null 2>/dev/null; then
PYPATH=""
set -x
while getopts "d:" opt; do
case $opt in
d)
PYPATH=$OPTARG
;;
esac
done
shift $(($OPTIND - 1))
export PYTHONPATH=$PYPATH:$PYTHONPATH
$@
else
echo "paddle package is already in your PYTHONPATH. But unittest need a clean environment."
echo "Please uninstall paddle package before start unittest. Try to 'pip uninstall paddle'"
exit 1
fi
PYPATH=""
set -x
while getopts "d:" opt; do
case $opt in
d)
PYPATH=$OPTARG
;;
esac
done
shift $(($OPTIND - 1))
export PYTHONPATH=$PYPATH:$PYTHONPATH
$@
......@@ -22,7 +22,5 @@ if(WITH_C_API)
endif()
if(WITH_SWIG_PY)
configure_file(${CMAKE_CURRENT_SOURCE_DIR}/setup.py.in
${CMAKE_CURRENT_SOURCE_DIR}/setup.py)
add_subdirectory(api)
endif()
......@@ -82,9 +82,7 @@ SWIG_LINK_LIBRARIES(swig_paddle
add_custom_command(OUTPUT ${PROJ_ROOT}/paddle/py_paddle/_swig_paddle.so
COMMAND cp ${CMAKE_CURRENT_BINARY_DIR}/swig_paddle.py ${PROJ_ROOT}/paddle/py_paddle
COMMAND cp ${CMAKE_CURRENT_BINARY_DIR}/_swig_paddle.so ${PROJ_ROOT}/paddle/py_paddle
COMMAND env ${py_env} ${PYTHON_EXECUTABLE} setup.py bdist_wheel
COMMAND ${CMAKE_COMMAND} -E touch dist/.timestamp
COMMAND rm -rf py_paddle.egg-info build
COMMAND ${CMAKE_COMMAND} -E touch .timestamp
WORKING_DIRECTORY ${PROJ_ROOT}/paddle
DEPENDS _swig_paddle
)
......@@ -92,10 +90,6 @@ add_custom_command(OUTPUT ${PROJ_ROOT}/paddle/py_paddle/_swig_paddle.so
# TODO(yuyang18) : make wheel name calculated by cmake
add_custom_target(python_api_wheel ALL DEPENDS ${PROJ_ROOT}/paddle/py_paddle/_swig_paddle.so)
install(DIRECTORY ${CMAKE_SOURCE_DIR}/paddle/dist/
DESTINATION opt/paddle/share/wheels
)
if(WITH_TESTING)
IF(NOT PY_PIP_FOUND)
SET(PIP_SOURCES_DIR ${PYTHON_SOURCES_DIR}/pip)
......@@ -108,7 +102,7 @@ if(WITH_TESTING)
BUILD_COMMAND ""
INSTALL_COMMAND env ${py_env} ${PYTHON_EXECUTABLE} setup.py install
BUILD_IN_SOURCE 1
DEPENDS python setuptools python_api_wheel
#DEPENDS python setuptools python_api_wheel
)
ENDIF()
add_subdirectory(test)
......
add_python_test(test_swig_api
testArguments.py testGradientMachine.py testMatrix.py testVector.py testTrain.py testTrainer.py)
py_test(testTrain SRCS testTrain.py)
py_test(testMatrix SRCS testMatrix.py)
py_test(testVector SRCS testVector.py)
py_test(testTrainer SRCS testTrainer.py)
py_test(testArguments SRCS testArguments.py)
py_test(testGradientMachine SRCS testGradientMachine.py)
......@@ -12,17 +12,15 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "hl_batch_transpose.h"
#include "hl_base.h"
#include "hl_batch_transpose.h"
const int TILE_DIM = 64;
const int BLOCK_ROWS = 16;
// No bank-conflict transpose for a batch of data.
__global__ void batchTransposeNoBankConflicts(real* odata,
const real* idata,
int numSamples, int width,
int height) {
__global__ void batchTransposeNoBankConflicts(
real* odata, const real* idata, int numSamples, int width, int height) {
__shared__ float tile[TILE_DIM][TILE_DIM + 1];
const int x = blockIdx.x * TILE_DIM + threadIdx.x;
......@@ -50,12 +48,12 @@ __global__ void batchTransposeNoBankConflicts(real* odata,
newX] = tile[threadIdx.x][j];
}
void batchTranspose(const real* input, real* output, int width, int height,
int batchSize) {
void batchTranspose(
const real* input, real* output, int width, int height, int batchSize) {
dim3 dimBlock(TILE_DIM, BLOCK_ROWS, 1);
dim3 dimGrid(DIVUP(width, TILE_DIM), DIVUP(height, TILE_DIM), batchSize);
batchTransposeNoBankConflicts<<<dimGrid, dimBlock, 0, STREAM_DEFAULT>>>
(output, input, batchSize, width, height);
batchTransposeNoBankConflicts<<<dimGrid, dimBlock, 0, STREAM_DEFAULT>>>(
output, input, batchSize, width, height);
CHECK_SYNC("batchTranspose failed!");
}
......@@ -12,27 +12,23 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "hl_aggregate.h"
#include "hl_base.h"
#include "hl_cuda.h"
#include "hl_cuda.ph"
#include "hl_aggregate.h"
#include "hl_thread.ph"
#include "hl_matrix_base.cuh"
#include "hl_thread.ph"
#include "paddle/utils/Logging.h"
/**
* @brief matrix row operator.
*/
template<class Agg, int blockSize>
__global__ void KeMatrixRowOp(Agg agg,
real *E,
real *Sum,
int dimN) {
template <class Agg, int blockSize>
__global__ void KeMatrixRowOp(Agg agg, real *E, real *Sum, int dimN) {
__shared__ real sum_s[blockSize];
int cnt = (dimN + blockSize -1) / blockSize;
int rowId = blockIdx.x + blockIdx.y*gridDim.x;
int index = rowId*dimN;
int cnt = (dimN + blockSize - 1) / blockSize;
int rowId = blockIdx.x + blockIdx.y * gridDim.x;
int index = rowId * dimN;
int tid = threadIdx.x;
int lmt = tid;
......@@ -44,7 +40,7 @@ __global__ void KeMatrixRowOp(Agg agg,
sum_s[tid] = tmp;
__syncthreads();
for (int stride = blockSize/2; stride > 0; stride = stride/2) {
for (int stride = blockSize / 2; stride > 0; stride = stride / 2) {
if (tid < stride) {
sum_s[tid] = agg(sum_s[tid], sum_s[tid + stride]);
}
......@@ -58,29 +54,21 @@ __global__ void KeMatrixRowOp(Agg agg,
}
template <class Agg>
void hl_matrix_row_op(Agg agg,
real *A_d,
real *C_d,
int dimM,
int dimN) {
void hl_matrix_row_op(Agg agg, real *A_d, real *C_d, int dimM, int dimN) {
int blocksX = dimM;
int blocksY = 1;
dim3 threads(128, 1);
dim3 grid(blocksX, blocksY);
KeMatrixRowOp<Agg, 128><<< grid, threads, 0, STREAM_DEFAULT >>>
(agg, A_d, C_d, dimN);
KeMatrixRowOp<Agg, 128><<<grid, threads, 0, STREAM_DEFAULT>>>(
agg, A_d, C_d, dimN);
}
void hl_matrix_row_sum(real *A_d, real *C_d, int dimM, int dimN) {
CHECK_NOTNULL(A_d);
CHECK_NOTNULL(C_d);
hl_matrix_row_op(aggregate::sum(),
A_d,
C_d,
dimM,
dimN);
hl_matrix_row_op(aggregate::sum(), A_d, C_d, dimM, dimN);
CHECK_SYNC("hl_matrix_row_sum failed");
}
......@@ -88,11 +76,7 @@ void hl_matrix_row_max(real *A_d, real *C_d, int dimM, int dimN) {
CHECK_NOTNULL(A_d);
CHECK_NOTNULL(C_d);
hl_matrix_row_op(aggregate::max(),
A_d,
C_d,
dimM,
dimN);
hl_matrix_row_op(aggregate::max(), A_d, C_d, dimM, dimN);
CHECK_SYNC("hl_matrix_row_max failed");
}
......@@ -100,23 +84,16 @@ void hl_matrix_row_min(real *A_d, real *C_d, int dimM, int dimN) {
CHECK_NOTNULL(A_d);
CHECK_NOTNULL(C_d);
hl_matrix_row_op(aggregate::min(),
A_d,
C_d,
dimM,
dimN);
hl_matrix_row_op(aggregate::min(), A_d, C_d, dimM, dimN);
CHECK_SYNC("hl_matrix_row_min failed");
}
/**
* @brief matrix column operator.
*/
template<class Agg>
__global__ void KeMatrixColumnOp(Agg agg,
real *E,
real *Sum,
int dimM,
int dimN) {
template <class Agg>
__global__ void KeMatrixColumnOp(
Agg agg, real *E, real *Sum, int dimM, int dimN) {
int rowIdx = blockIdx.x * blockDim.x + threadIdx.x;
real tmp = agg.init();
if (rowIdx < dimN) {
......@@ -127,15 +104,12 @@ __global__ void KeMatrixColumnOp(Agg agg,
}
}
template<class Agg, int blockDimX, int blockDimY>
__global__ void KeMatrixColumnOp_S(Agg agg,
real *E,
real *Sum,
int dimM,
int dimN) {
__shared__ real _sum[blockDimX*blockDimY];
int rowIdx = blockIdx.x * blockDim.x + threadIdx.x;
int index = threadIdx.y;
template <class Agg, int blockDimX, int blockDimY>
__global__ void KeMatrixColumnOp_S(
Agg agg, real *E, real *Sum, int dimM, int dimN) {
__shared__ real _sum[blockDimX * blockDimY];
int rowIdx = blockIdx.x * blockDim.x + threadIdx.x;
int index = threadIdx.y;
real tmp = agg.init();
if (rowIdx < dimN) {
......@@ -144,14 +118,14 @@ __global__ void KeMatrixColumnOp_S(Agg agg,
index += blockDimY;
}
}
_sum[threadIdx.x + threadIdx.y*blockDimX] = tmp;
_sum[threadIdx.x + threadIdx.y * blockDimX] = tmp;
__syncthreads();
if (rowIdx < dimN) {
if (threadIdx.y ==0) {
if (threadIdx.y == 0) {
real tmp = agg.init();
for (int i=0; i < blockDimY; i++) {
tmp = agg(tmp, _sum[threadIdx.x + i*blockDimX]);
for (int i = 0; i < blockDimY; i++) {
tmp = agg(tmp, _sum[threadIdx.x + i * blockDimX]);
}
Sum[rowIdx] = tmp;
}
......@@ -159,25 +133,21 @@ __global__ void KeMatrixColumnOp_S(Agg agg,
}
template <class Agg>
void hl_matrix_column_op(Agg agg,
real *A_d,
real *C_d,
int dimM,
int dimN) {
void hl_matrix_column_op(Agg agg, real *A_d, real *C_d, int dimM, int dimN) {
if (dimN >= 8192) {
int blocksX = (dimN + 128 -1) / 128;
int blocksX = (dimN + 128 - 1) / 128;
int blocksY = 1;
dim3 threads(128, 1);
dim3 grid(blocksX, blocksY);
KeMatrixColumnOp<Agg><<< grid, threads, 0, STREAM_DEFAULT >>>
(agg, A_d, C_d, dimM, dimN);
KeMatrixColumnOp<Agg><<<grid, threads, 0, STREAM_DEFAULT>>>(
agg, A_d, C_d, dimM, dimN);
} else {
int blocksX = (dimN + 32 -1) / 32;
int blocksX = (dimN + 32 - 1) / 32;
int blocksY = 1;
dim3 threads(32, 32);
dim3 grid(blocksX, blocksY);
KeMatrixColumnOp_S<Agg, 32, 32><<< grid, threads, 0, STREAM_DEFAULT>>>
(agg, A_d, C_d, dimM, dimN);
KeMatrixColumnOp_S<Agg, 32, 32><<<grid, threads, 0, STREAM_DEFAULT>>>(
agg, A_d, C_d, dimM, dimN);
}
return;
......@@ -187,11 +157,7 @@ void hl_matrix_column_sum(real *A_d, real *C_d, int dimM, int dimN) {
CHECK_NOTNULL(A_d);
CHECK_NOTNULL(C_d);
hl_matrix_column_op(aggregate::sum(),
A_d,
C_d,
dimM,
dimN);
hl_matrix_column_op(aggregate::sum(), A_d, C_d, dimM, dimN);
CHECK_SYNC("hl_matrix_column_sum failed");
}
......@@ -200,11 +166,7 @@ void hl_matrix_column_max(real *A_d, real *C_d, int dimM, int dimN) {
CHECK_NOTNULL(A_d);
CHECK_NOTNULL(C_d);
hl_matrix_column_op(aggregate::max(),
A_d,
C_d,
dimM,
dimN);
hl_matrix_column_op(aggregate::max(), A_d, C_d, dimM, dimN);
CHECK_SYNC("hl_matrix_column_max failed");
}
......@@ -213,11 +175,7 @@ void hl_matrix_column_min(real *A_d, real *C_d, int dimM, int dimN) {
CHECK_NOTNULL(A_d);
CHECK_NOTNULL(C_d);
hl_matrix_column_op(aggregate::min(),
A_d,
C_d,
dimM,
dimN);
hl_matrix_column_op(aggregate::min(), A_d, C_d, dimM, dimN);
CHECK_SYNC("hl_matrix_column_min failed");
}
......@@ -226,16 +184,16 @@ template <int blockSize>
__global__ void KeVectorSum(real *E, real *Sum, int dimM) {
__shared__ double sum_s[blockSize];
int tid = threadIdx.x;
int index = blockIdx.y*blockDim.x+threadIdx.x;
int index = blockIdx.y * blockDim.x + threadIdx.x;
sum_s[tid] = 0.0f;
while (index < dimM) {
sum_s[tid] += E[index];
index += blockDim.x*gridDim.y;
index += blockDim.x * gridDim.y;
}
__syncthreads();
for (int stride = blockSize/2; stride > 0; stride = stride/2) {
for (int stride = blockSize / 2; stride > 0; stride = stride / 2) {
if (tid < stride) {
sum_s[tid] += sum_s[tid + stride];
}
......@@ -259,38 +217,39 @@ void hl_vector_sum(real *A_d, real *C_h, int dimM) {
dim3 threads(blockSize, 1);
dim3 grid(blocksX, blocksY);
struct _hl_event_st hl_event_st = {.cu_event = t_resource.event};
struct _hl_event_st hl_event_st = {.cu_event = t_resource.event};
hl_event_t hl_event = &hl_event_st;
while (!hl_cuda_event_is_ready(hl_event)) {}
while (!hl_cuda_event_is_ready(hl_event)) {
}
KeVectorSum<128><<< grid, threads, 0, STREAM_DEFAULT >>>
(A_d, t_resource.gpu_mem, dimM);
KeVectorSum<128><<< 1, threads, 0, STREAM_DEFAULT >>>
(t_resource.gpu_mem, t_resource.cpu_mem, 128);
KeVectorSum<128><<<grid, threads, 0, STREAM_DEFAULT>>>(
A_d, t_resource.gpu_mem, dimM);
KeVectorSum<128><<<1, threads, 0, STREAM_DEFAULT>>>(
t_resource.gpu_mem, t_resource.cpu_mem, 128);
hl_memcpy_async(C_h, t_resource.cpu_mem, sizeof(real), HPPL_STREAM_DEFAULT);
hl_stream_record_event(HPPL_STREAM_DEFAULT, hl_event);
hl_stream_synchronize(HPPL_STREAM_DEFAULT);
cudaError_t err = (cudaError_t)hl_get_device_last_error();
CHECK_EQ(cudaSuccess, err)
<< "CUDA error: " << hl_get_device_error_string((size_t)err);
CHECK_EQ(cudaSuccess, err) << "CUDA error: "
<< hl_get_device_error_string((size_t)err);
}
template <int blockSize>
__global__ void KeVectorAbsSum(real *E, real *Sum, int dimM) {
__shared__ double sum_s[blockSize];
int tid = threadIdx.x;
int index = blockIdx.y*blockDim.x+threadIdx.x;
int index = blockIdx.y * blockDim.x + threadIdx.x;
sum_s[tid] = 0.0f;
while (index < dimM) {
sum_s[tid] += abs(E[index]);
index += blockDim.x*gridDim.y;
index += blockDim.x * gridDim.y;
}
__syncthreads();
for (int stride = blockSize/2; stride > 0; stride = stride/2) {
for (int stride = blockSize / 2; stride > 0; stride = stride / 2) {
if (tid < stride) {
sum_s[tid] += sum_s[tid + stride];
}
......@@ -314,20 +273,21 @@ void hl_vector_abs_sum(real *A_d, real *C_h, int dimM) {
dim3 threads(blockSize, 1);
dim3 grid(blocksX, blocksY);
struct _hl_event_st hl_event_st = {.cu_event = t_resource.event};
struct _hl_event_st hl_event_st = {.cu_event = t_resource.event};
hl_event_t hl_event = &hl_event_st;
while (!hl_cuda_event_is_ready(hl_event)) {}
while (!hl_cuda_event_is_ready(hl_event)) {
}
KeVectorAbsSum<128><<< grid, threads, 0, STREAM_DEFAULT >>>
(A_d, t_resource.gpu_mem, dimM);
KeVectorAbsSum<128><<< 1, threads, 0, STREAM_DEFAULT >>>
(t_resource.gpu_mem, t_resource.cpu_mem, 128);
KeVectorAbsSum<128><<<grid, threads, 0, STREAM_DEFAULT>>>(
A_d, t_resource.gpu_mem, dimM);
KeVectorAbsSum<128><<<1, threads, 0, STREAM_DEFAULT>>>(
t_resource.gpu_mem, t_resource.cpu_mem, 128);
hl_memcpy_async(C_h, t_resource.cpu_mem, sizeof(real), HPPL_STREAM_DEFAULT);
hl_stream_record_event(HPPL_STREAM_DEFAULT, hl_event);
hl_stream_synchronize(HPPL_STREAM_DEFAULT);
cudaError_t err = (cudaError_t)hl_get_device_last_error();
CHECK_EQ(cudaSuccess, err)
<< "CUDA error: " << hl_get_device_error_string((size_t)err);
CHECK_EQ(cudaSuccess, err) << "CUDA error: "
<< hl_get_device_error_string((size_t)err);
}
此差异已折叠。
此差异已折叠。
此差异已折叠。
......@@ -16,36 +16,36 @@ limitations under the License. */
#include "hl_device_functions.cuh"
#include "paddle/utils/Logging.h"
__global__ void KeMaxSequenceForward(real *input,
const int *sequence,
__global__ void KeMaxSequenceForward(real* input,
const int* sequence,
real* output,
int *index,
int* index,
int numSequences,
int dim) {
int dimIdx = threadIdx.x;
int sequenceId = blockIdx.x;
if (sequenceId >= numSequences) return;
int start = sequence[sequenceId];
int end = sequence[sequenceId+1];
int end = sequence[sequenceId + 1];
for (int i = dimIdx; i < dim; i += blockDim.x) {
real tmp = -HL_FLOAT_MAX;
int tmpId = -1;
for (int insId = start; insId < end; insId++) {
if (tmp < input[insId*dim + i]) {
tmp = input[insId*dim + i];
if (tmp < input[insId * dim + i]) {
tmp = input[insId * dim + i];
tmpId = insId;
}
}
output[sequenceId*dim + i] = tmp;
index[sequenceId*dim + i] = tmpId;
output[sequenceId * dim + i] = tmp;
index[sequenceId * dim + i] = tmpId;
}
}
void hl_max_sequence_forward(real* input,
const int* sequence,
real* output,
int *index,
int* index,
int numSequences,
int dim) {
CHECK_NOTNULL(input);
......@@ -55,29 +55,23 @@ void hl_max_sequence_forward(real* input,
dim3 threads(256, 1);
dim3 grid(numSequences, 1);
KeMaxSequenceForward<<< grid, threads, 0, STREAM_DEFAULT >>>
(input, sequence, output, index, numSequences, dim);
KeMaxSequenceForward<<<grid, threads, 0, STREAM_DEFAULT>>>(
input, sequence, output, index, numSequences, dim);
CHECK_SYNC("hl_max_sequence_forward failed");
}
__global__ void KeMaxSequenceBackward(real *outputGrad,
int *index,
real* inputGrad,
int numSequences,
int dim) {
__global__ void KeMaxSequenceBackward(
real* outputGrad, int* index, real* inputGrad, int numSequences, int dim) {
int idx = threadIdx.x + blockIdx.x * blockDim.x;
int colIdx = idx % dim;
if (idx < numSequences*dim) {
if (idx < numSequences * dim) {
int insId = index[idx];
inputGrad[insId * dim + colIdx] += outputGrad[idx];
}
}
void hl_max_sequence_backward(real* outputGrad,
int *index,
real* inputGrad,
int numSequences,
int dim) {
void hl_max_sequence_backward(
real* outputGrad, int* index, real* inputGrad, int numSequences, int dim) {
CHECK_NOTNULL(outputGrad);
CHECK_NOTNULL(index);
CHECK_NOTNULL(inputGrad);
......@@ -85,12 +79,12 @@ void hl_max_sequence_backward(real* outputGrad,
unsigned int blocks = (numSequences * dim + 128 - 1) / 128;
dim3 threads(128, 1);
dim3 grid(blocks, 1);
KeMaxSequenceBackward<<< grid, threads, 0, STREAM_DEFAULT >>>
(outputGrad, index, inputGrad, numSequences, dim);
KeMaxSequenceBackward<<<grid, threads, 0, STREAM_DEFAULT>>>(
outputGrad, index, inputGrad, numSequences, dim);
CHECK_SYNC("hl_max_sequence_backward failed");
}
template<int blockDimX, int blockDimY, int gridDimX, bool AddRow>
template <int blockDimX, int blockDimY, int gridDimX, bool AddRow>
__global__ void KeMatrixAddRows(real* output,
real* table,
int* ids,
......@@ -104,8 +98,8 @@ __global__ void KeMatrixAddRows(real* output,
while (sampleId < numSamples) {
int tableId = ids[sampleId];
if ((0 <= tableId) && (tableId < tableSize)) {
real *outputData = output + sampleId * dim;
real *tableData = table + tableId * dim;
real* outputData = output + sampleId * dim;
real* tableData = table + tableId * dim;
for (int i = idx; i < dim; i += blockDimX) {
if (AddRow == 0) {
outputData[i] += tableData[i];
......@@ -114,24 +108,27 @@ __global__ void KeMatrixAddRows(real* output,
}
}
}
sampleId += blockDimY*gridDimX;
sampleId += blockDimY * gridDimX;
}
}
template<int blockDimX, int blockDimY, int gridDimX, bool seq2batch, bool isAdd>
__global__
void KeSequence2Batch(real *batch,
real *sequence,
const int *batchIndex,
int seqWidth,
int batchCount) {
template <int blockDimX,
int blockDimY,
int gridDimX,
bool seq2batch,
bool isAdd>
__global__ void KeSequence2Batch(real* batch,
real* sequence,
const int* batchIndex,
int seqWidth,
int batchCount) {
int idx = threadIdx.x;
int idy = threadIdx.y;
int id = blockIdx.x + idy * gridDimX;
while (id < batchCount) {
int seqId = batchIndex[id];
real* batchData = batch + id*seqWidth;
real* seqData = sequence + seqId*seqWidth;
real* batchData = batch + id * seqWidth;
real* seqData = sequence + seqId * seqWidth;
for (int i = idx; i < seqWidth; i += blockDimX) {
if (seq2batch) {
if (isAdd) {
......@@ -147,13 +144,13 @@ void KeSequence2Batch(real *batch,
}
}
}
id += blockDimY*gridDimX;
id += blockDimY * gridDimX;
}
}
void hl_sequence2batch_copy(real *batch,
real *sequence,
const int *batchIndex,
void hl_sequence2batch_copy(real* batch,
real* sequence,
const int* batchIndex,
int seqWidth,
int batchCount,
bool seq2batch) {
......@@ -164,18 +161,18 @@ void hl_sequence2batch_copy(real *batch,
dim3 threads(128, 8);
dim3 grid(8, 1);
if (seq2batch) {
KeSequence2Batch<128, 8, 8, 1, 0><<< grid, threads, 0, STREAM_DEFAULT >>>
(batch, sequence, batchIndex, seqWidth, batchCount);
KeSequence2Batch<128, 8, 8, 1, 0><<<grid, threads, 0, STREAM_DEFAULT>>>(
batch, sequence, batchIndex, seqWidth, batchCount);
} else {
KeSequence2Batch<128, 8, 8, 0, 0><<< grid, threads, 0, STREAM_DEFAULT >>>
(batch, sequence, batchIndex, seqWidth, batchCount);
KeSequence2Batch<128, 8, 8, 0, 0><<<grid, threads, 0, STREAM_DEFAULT>>>(
batch, sequence, batchIndex, seqWidth, batchCount);
}
CHECK_SYNC("hl_sequence2batch_copy failed");
}
void hl_sequence2batch_add(real *batch,
real *sequence,
int *batchIndex,
void hl_sequence2batch_add(real* batch,
real* sequence,
int* batchIndex,
int seqWidth,
int batchCount,
bool seq2batch) {
......@@ -186,23 +183,22 @@ void hl_sequence2batch_add(real *batch,
dim3 threads(128, 8);
dim3 grid(8, 1);
if (seq2batch) {
KeSequence2Batch<128, 8, 8, 1, 1><<< grid, threads, 0, STREAM_DEFAULT >>>
(batch, sequence, batchIndex, seqWidth, batchCount);
KeSequence2Batch<128, 8, 8, 1, 1><<<grid, threads, 0, STREAM_DEFAULT>>>(
batch, sequence, batchIndex, seqWidth, batchCount);
} else {
KeSequence2Batch<128, 8, 8, 0, 1><<< grid, threads, 0, STREAM_DEFAULT >>>
(batch, sequence, batchIndex, seqWidth, batchCount);
KeSequence2Batch<128, 8, 8, 0, 1><<<grid, threads, 0, STREAM_DEFAULT>>>(
batch, sequence, batchIndex, seqWidth, batchCount);
}
CHECK_SYNC("hl_sequence2batch_add failed");
}
template<bool normByTimes, bool seq2batch>
__global__
void KeSequence2BatchPadding(real* batch,
real* sequence,
const int* sequenceStartPositions,
const size_t sequenceWidth,
const size_t maxSequenceLength,
const size_t numSequences) {
template <bool normByTimes, bool seq2batch>
__global__ void KeSequence2BatchPadding(real* batch,
real* sequence,
const int* sequenceStartPositions,
const size_t sequenceWidth,
const size_t maxSequenceLength,
const size_t numSequences) {
int batchIdx = blockIdx.y;
int sequenceStart = sequenceStartPositions[batchIdx];
int sequenceLength = sequenceStartPositions[batchIdx + 1] - sequenceStart;
......@@ -276,37 +272,49 @@ void hl_sequence2batch_copy_padding(real* batch,
if (seq2batch) {
/* sequence -> batch */
if (normByTimes) {
KeSequence2BatchPadding<1, 1><<< grid, threads, 0, STREAM_DEFAULT >>>(
batch, sequence, sequenceStartPositions,
sequenceWidth, maxSequenceLength, numSequences);
KeSequence2BatchPadding<1, 1><<<grid, threads, 0, STREAM_DEFAULT>>>(
batch,
sequence,
sequenceStartPositions,
sequenceWidth,
maxSequenceLength,
numSequences);
} else {
KeSequence2BatchPadding<0, 1><<< grid, threads, 0, STREAM_DEFAULT >>>(
batch, sequence, sequenceStartPositions,
sequenceWidth, maxSequenceLength, numSequences);
KeSequence2BatchPadding<0, 1><<<grid, threads, 0, STREAM_DEFAULT>>>(
batch,
sequence,
sequenceStartPositions,
sequenceWidth,
maxSequenceLength,
numSequences);
}
} else {
/* batch -> sequence */
if (normByTimes) {
KeSequence2BatchPadding<1, 0><<< grid, threads, 0, STREAM_DEFAULT >>>(
batch, sequence, sequenceStartPositions,
sequenceWidth, maxSequenceLength, numSequences);
KeSequence2BatchPadding<1, 0><<<grid, threads, 0, STREAM_DEFAULT>>>(
batch,
sequence,
sequenceStartPositions,
sequenceWidth,
maxSequenceLength,
numSequences);
} else {
KeSequence2BatchPadding<0, 0><<< grid, threads, 0, STREAM_DEFAULT >>>(
batch, sequence, sequenceStartPositions,
sequenceWidth, maxSequenceLength, numSequences);
KeSequence2BatchPadding<0, 0><<<grid, threads, 0, STREAM_DEFAULT>>>(
batch,
sequence,
sequenceStartPositions,
sequenceWidth,
maxSequenceLength,
numSequences);
}
}
CHECK_SYNC("hl_sequence2batch_copy_padding failed");
}
__device__ inline float my_rsqrt(float x) {
return rsqrtf(x);
}
__device__ inline float my_rsqrt(float x) { return rsqrtf(x); }
__device__ inline double my_rsqrt(double x) {
return rsqrt(x);
}
__device__ inline double my_rsqrt(double x) { return rsqrt(x); }
__global__ void KeSequenceAvgForward(real* dst,
real* src,
......@@ -327,8 +335,8 @@ __global__ void KeSequenceAvgForward(real* dst,
for (int i = start; i < end; i++) {
sum += src[i * width + col];
}
sum = mode == 1 ? sum :
(mode == 0 ? sum / seqLength : sum * my_rsqrt((real)seqLength));
sum = mode == 1 ? sum : (mode == 0 ? sum / seqLength
: sum * my_rsqrt((real)seqLength));
dst[gid] += sum;
}
}
......@@ -347,10 +355,10 @@ void hl_sequence_avg_forward(real* dst,
int grid = DIVUP(width * height, 512);
CHECK(mode == 0 || mode == 1 || mode == 2)
<< "mode error in hl_sequence_avg_forward!";
<< "mode error in hl_sequence_avg_forward!";
KeSequenceAvgForward<<< grid, block, 0, STREAM_DEFAULT >>>
(dst, src, starts, height, width, mode);
KeSequenceAvgForward<<<grid, block, 0, STREAM_DEFAULT>>>(
dst, src, starts, height, width, mode);
CHECK_SYNC("hl_sequence_avg_forward failed");
}
......@@ -370,8 +378,8 @@ __global__ void KeSequenceAvgBackward(real* dst,
int seqLength = end - start;
if (seqLength == 0) return;
real grad = src[gid];
grad = mode == 1 ? grad :
(mode == 0 ? grad / seqLength : grad * my_rsqrt((real)seqLength));
grad = mode == 1 ? grad : (mode == 0 ? grad / seqLength
: grad * my_rsqrt((real)seqLength));
for (int i = start; i < end; i++) {
dst[i * width + col] += grad;
}
......@@ -392,9 +400,9 @@ void hl_sequence_avg_backward(real* dst,
int grid = DIVUP(width * height, 512);
CHECK(mode == 0 || mode == 1 || mode == 2)
<< "mode error in hl_sequence_avg_backward!";
<< "mode error in hl_sequence_avg_backward!";
KeSequenceAvgBackward<<< grid, block, 0, STREAM_DEFAULT >>>
(dst, src, starts, height, width, mode);
KeSequenceAvgBackward<<<grid, block, 0, STREAM_DEFAULT>>>(
dst, src, starts, height, width, mode);
CHECK_SYNC("hl_sequence_avg_backward failed");
}
此差异已折叠。
......@@ -12,13 +12,12 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include <cmath>
#include <stdlib.h>
#include "hl_cuda.h"
#include "hl_time.h"
#include <cmath>
#include "hl_base.h"
#include "hl_cuda.h"
#include "hl_perturbation_util.cuh"
#include "hl_time.h"
#define _USE_MATH_DEFINES
......@@ -30,10 +29,16 @@ limitations under the License. */
* centerX, centerY: translation.
* sourceX, sourceY: output coordinates in the original image.
*/
__device__ void getTranformCoord(int x, int y, real theta, real scale,
real tgtCenter, real imgCenter,
real centerR, real centerC,
int* sourceX, int* sourceY) {
__device__ void getTranformCoord(int x,
int y,
real theta,
real scale,
real tgtCenter,
real imgCenter,
real centerR,
real centerC,
int* sourceX,
int* sourceY) {
real H[4] = {cosf(-theta), -sinf(-theta), sinf(-theta), cosf(-theta)};
// compute coornidates in the rotated and scaled image
......@@ -57,11 +62,17 @@ __device__ void getTranformCoord(int x, int y, real theta, real scale,
* created by Wei Xu (genome), converted by Jiang Wang
*/
__global__ void kSamplingPatches(const real* imgs, real* targets,
int imgSize, int tgtSize, const int channels,
int samplingRate, const real* thetas,
const real* scales, const int* centerRs,
const int* centerCs, const real padValue,
__global__ void kSamplingPatches(const real* imgs,
real* targets,
int imgSize,
int tgtSize,
const int channels,
int samplingRate,
const real* thetas,
const real* scales,
const int* centerRs,
const int* centerCs,
const real padValue,
const int numImages) {
const int caseIdx = blockIdx.x * 4 + threadIdx.x;
const int pxIdx = blockIdx.y * 128 + threadIdx.y;
......@@ -80,8 +91,15 @@ __global__ void kSamplingPatches(const real* imgs, real* targets,
const int pxY = pxIdx / tgtSize;
int srcPxX, srcPxY;
getTranformCoord(pxX, pxY, thetas[imgIdx], scales[imgIdx], tgtCenter,
imgCenter, centerCs[caseIdx], centerRs[caseIdx], &srcPxX,
getTranformCoord(pxX,
pxY,
thetas[imgIdx],
scales[imgIdx],
tgtCenter,
imgCenter,
centerCs[caseIdx],
centerRs[caseIdx],
&srcPxX,
&srcPxY);
imgs += (imgIdx * imgPixels + srcPxY * imgSize + srcPxX) * channels;
......@@ -100,10 +118,15 @@ __global__ void kSamplingPatches(const real* imgs, real* targets,
*
* created by Wei Xu
*/
void hl_generate_disturb_params(real*& gpuAngle, real*& gpuScaleRatio,
int*& gpuCenterR, int*& gpuCenterC,
int numImages, int imgSize, real rotateAngle,
real scaleRatio, int samplingRate,
void hl_generate_disturb_params(real*& gpuAngle,
real*& gpuScaleRatio,
int*& gpuCenterR,
int*& gpuCenterC,
int numImages,
int imgSize,
real rotateAngle,
real scaleRatio,
int samplingRate,
bool isTrain) {
// The number of output samples.
int numPatches = numImages * samplingRate;
......@@ -123,7 +146,8 @@ void hl_generate_disturb_params(real*& gpuAngle, real*& gpuScaleRatio,
for (int i = 0; i < numImages; i++) {
r_angle[i] =
(rotateAngle * M_PI / 180.0) * (rand() / (RAND_MAX + 1.0) // NOLINT
- 0.5);
-
0.5);
s_ratio[i] =
1 + (rand() / (RAND_MAX + 1.0) - 0.5) * scaleRatio; // NOLINT
}
......@@ -140,8 +164,10 @@ void hl_generate_disturb_params(real*& gpuAngle, real*& gpuScaleRatio,
int pxY =
(int)(real(imgSize - 1) * rand() / (RAND_MAX + 1.0)); // NOLINT
const real H[4] = {cos(-r_angle[i]), -sin(-r_angle[i]),
sin(-r_angle[i]), cos(-r_angle[i])};
const real H[4] = {cos(-r_angle[i]),
-sin(-r_angle[i]),
sin(-r_angle[i]),
cos(-r_angle[i])};
real x = pxX - imgCenter;
real y = pxY - imgCenter;
real xx = H[0] * x + H[1] * y;
......@@ -185,9 +211,12 @@ void hl_generate_disturb_params(real*& gpuAngle, real*& gpuScaleRatio,
delete[] center_c;
}
void hl_conv_random_disturb_with_params(const real* images, int imgSize,
int tgtSize, int channels,
int numImages, int samplingRate,
void hl_conv_random_disturb_with_params(const real* images,
int imgSize,
int tgtSize,
int channels,
int numImages,
int samplingRate,
const real* gpuRotationAngle,
const real* gpuScaleRatio,
const int* gpuCenterR,
......@@ -202,29 +231,59 @@ void hl_conv_random_disturb_with_params(const real* images, int imgSize,
dim3 threadsPerBlock(4, 128);
dim3 numBlocks(DIVUP(numPatches, 4), DIVUP(targetSize, 128));
kSamplingPatches <<<numBlocks, threadsPerBlock>>>
(images, target, imgSize, tgtSize, channels, samplingRate,
gpuRotationAngle, gpuScaleRatio, gpuCenterR, gpuCenterC,
paddingValue, numImages);
kSamplingPatches<<<numBlocks, threadsPerBlock>>>(images,
target,
imgSize,
tgtSize,
channels,
samplingRate,
gpuRotationAngle,
gpuScaleRatio,
gpuCenterR,
gpuCenterC,
paddingValue,
numImages);
hl_device_synchronize();
}
void hl_conv_random_disturb(const real* images, int imgSize,
int tgtSize, int channels, int numImages,
real scaleRatio, real rotateAngle,
int samplingRate, real* gpu_r_angle,
real* gpu_s_ratio, int* gpu_center_r,
int* gpu_center_c, int paddingValue,
bool isTrain, real* targets) {
void hl_conv_random_disturb(const real* images,
int imgSize,
int tgtSize,
int channels,
int numImages,
real scaleRatio,
real rotateAngle,
int samplingRate,
real* gpu_r_angle,
real* gpu_s_ratio,
int* gpu_center_r,
int* gpu_center_c,
int paddingValue,
bool isTrain,
real* targets) {
// generate the random disturbance sequence and the sampling locations
hl_generate_disturb_params(gpu_r_angle, gpu_s_ratio, gpu_center_r,
gpu_center_c, numImages, imgSize, rotateAngle,
scaleRatio, samplingRate, isTrain);
hl_conv_random_disturb_with_params(
images, imgSize, tgtSize, channels, numImages,
samplingRate, gpu_r_angle, gpu_s_ratio,
gpu_center_r, gpu_center_r, paddingValue,
targets);
hl_generate_disturb_params(gpu_r_angle,
gpu_s_ratio,
gpu_center_r,
gpu_center_c,
numImages,
imgSize,
rotateAngle,
scaleRatio,
samplingRate,
isTrain);
hl_conv_random_disturb_with_params(images,
imgSize,
tgtSize,
channels,
numImages,
samplingRate,
gpu_r_angle,
gpu_s_ratio,
gpu_center_r,
gpu_center_r,
paddingValue,
targets);
}
......@@ -12,15 +12,16 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "hl_base.h"
#include "hl_device_functions.cuh"
#include "hl_cuda.h"
#include "hl_device_functions.cuh"
#include "paddle/utils/Logging.h"
template<int blockDimX, int blockDimY, int gridDimX, bool AddRow>
__global__ void KeMatrixAddRows(real* output, int ldo,
real* table, int ldt,
template <int blockDimX, int blockDimY, int gridDimX, bool AddRow>
__global__ void KeMatrixAddRows(real* output,
int ldo,
real* table,
int ldt,
int* ids,
int numSamples,
int tableSize,
......@@ -31,8 +32,8 @@ __global__ void KeMatrixAddRows(real* output, int ldo,
while (idy < numSamples) {
int tableId = ids[idy];
if ((0 <= tableId) && (tableId < tableSize)) {
real *out = output + idy * ldo;
real *tab = table + tableId * ldt;
real* out = output + idy * ldo;
real* tab = table + tableId * ldt;
for (int i = idx; i < dim; i += blockDimX) {
if (AddRow) {
paddle::paddleAtomicAdd(&tab[i], out[i]);
......@@ -45,8 +46,10 @@ __global__ void KeMatrixAddRows(real* output, int ldo,
}
}
void hl_matrix_select_rows(real* output, int ldo,
real* table, int ldt,
void hl_matrix_select_rows(real* output,
int ldo,
real* table,
int ldt,
int* ids,
int numSamples,
int tableSize,
......@@ -57,14 +60,16 @@ void hl_matrix_select_rows(real* output, int ldo,
dim3 threads(128, 8);
dim3 grid(8, 1);
KeMatrixAddRows<128, 8, 8, 0><<< grid, threads, 0, STREAM_DEFAULT >>>
(output, ldo, table, ldt, ids, numSamples, tableSize, dim);
KeMatrixAddRows<128, 8, 8, 0><<<grid, threads, 0, STREAM_DEFAULT>>>(
output, ldo, table, ldt, ids, numSamples, tableSize, dim);
CHECK_SYNC("hl_matrix_select_rows failed");
}
void hl_matrix_add_to_rows(real* table, int ldt,
real* input, int ldi,
void hl_matrix_add_to_rows(real* table,
int ldt,
real* input,
int ldi,
int* ids,
int numSamples,
int tableSize,
......@@ -75,16 +80,15 @@ void hl_matrix_add_to_rows(real* table, int ldt,
dim3 threads(128, 8);
dim3 grid(8, 1);
KeMatrixAddRows<128, 8, 8, 1><<< grid, threads, 0, STREAM_DEFAULT >>>
(input, ldi, table, ldt, ids, numSamples, tableSize, dim);
KeMatrixAddRows<128, 8, 8, 1><<<grid, threads, 0, STREAM_DEFAULT>>>(
input, ldi, table, ldt, ids, numSamples, tableSize, dim);
CHECK_SYNC("hl_matrix_add_to_rows failed");
}
template<class T, int blockDimX, int gridDimX>
__global__ void KeVectorSelect(T* dst, int sized,
const T* src, int sizes,
const int* ids, int sizei) {
template <class T, int blockDimX, int gridDimX>
__global__ void KeVectorSelect(
T* dst, int sized, const T* src, int sizes, const int* ids, int sizei) {
int idx = threadIdx.x + blockDimX * blockIdx.x;
while (idx < sizei) {
int index = ids[idx];
......@@ -95,9 +99,8 @@ __global__ void KeVectorSelect(T* dst, int sized,
}
template <class T>
void hl_vector_select_from(T* dst, int sized,
const T* src, int sizes,
const int* ids, int sizei) {
void hl_vector_select_from(
T* dst, int sized, const T* src, int sizes, const int* ids, int sizei) {
CHECK_NOTNULL(dst);
CHECK_NOTNULL(src);
CHECK_NOTNULL(ids);
......@@ -105,18 +108,17 @@ void hl_vector_select_from(T* dst, int sized,
dim3 threads(512, 1);
dim3 grid(8, 1);
KeVectorSelect<T, 512, 8><<< grid, threads, 0, STREAM_DEFAULT >>>
(dst, sized, src, sizes, ids, sizei);
KeVectorSelect<T, 512, 8><<<grid, threads, 0, STREAM_DEFAULT>>>(
dst, sized, src, sizes, ids, sizei);
CHECK_SYNC("hl_vector_select_from failed");
}
template
void hl_vector_select_from(real* dst, int sized,
const real* src, int sizes,
const int* ids, int sizei);
template
void hl_vector_select_from(int* dst, int sized,
const int* src, int sizes,
const int* ids, int sizei);
template void hl_vector_select_from(real* dst,
int sized,
const real* src,
int sizes,
const int* ids,
int sizei);
template void hl_vector_select_from(
int* dst, int sized, const int* src, int sizes, const int* ids, int sizei);
此差异已折叠。
......@@ -12,13 +12,15 @@ cc_test(variable_test SRCS variable_test.cc)
cc_library(scope SRCS scope.cc)
cc_test(scope_test SRCS scope_test.cc DEPS scope)
proto_library(attr_type SRCS attr_type.proto)
proto_library(op_proto SRCS op_proto.proto DEPS attr_type)
proto_library(op_desc SRCS op_desc.proto DEPS attr_type)
proto_library(attribute_proto SRCS attribute.proto)
proto_library(op_proto SRCS op_proto.proto DEPS attribute_proto)
proto_library(op_desc SRCS op_desc.proto DEPS attribute_proto)
cc_test(op_proto_test SRCS op_proto_test.cc DEPS op_proto protobuf)
cc_test(op_desc_test SRCS op_desc_test.cc DEPS op_desc protobuf)
cc_library(operator SRCS operator.cc DEPS op_desc device_context tensor scope)
cc_library(attribute SRCS attribute.cc DEPS op_desc op_proto)
cc_library(operator SRCS operator.cc DEPS op_desc device_context tensor scope attribute)
cc_test(operator_test SRCS operator_test.cc DEPS operator op_registry)
cc_library(grad_op_builder SRCS grad_op_builder.cc DEPS op_proto operator)
......@@ -26,7 +28,7 @@ cc_library(op_registry SRCS op_registry.cc DEPS op_desc grad_op_builder)
cc_test(op_registry_test SRCS op_registry_test.cc DEPS op_registry)
cc_test(grad_op_builder_test SRCS grad_op_builder_test.cc DEPS grad_op_builder op_registry add_op)
py_proto_compile(framework_py_proto SRCS attr_type.proto op_proto.proto op_desc.proto)
py_proto_compile(framework_py_proto SRCS attribute.proto op_proto.proto op_desc.proto)
# Generate an empty __init__.py to make framework_py_proto as a valid python module.
add_custom_target(framework_py_proto_init ALL COMMAND ${CMAKE_COMMAND} -E touch __init__.py)
add_dependencies(framework_py_proto framework_py_proto_init)
......
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/framework/attribute.h"
#include <vector>
namespace paddle {
namespace framework {
template <>
AttrType AttrTypeID<int>() {
return INT;
}
template <>
AttrType AttrTypeID<float>() {
return FLOAT;
}
template <>
AttrType AttrTypeID<std::string>() {
return STRING;
}
template <>
AttrType AttrTypeID<std::vector<int>>() {
return INTS;
}
template <>
AttrType AttrTypeID<std::vector<float>>() {
return FLOATS;
}
template <>
AttrType AttrTypeID<std::vector<std::string>>() {
return STRINGS;
}
Attribute GetAttrValue(const AttrDesc& attr_desc) {
switch (attr_desc.type()) {
case paddle::framework::AttrType::INT: {
return attr_desc.i();
}
case paddle::framework::AttrType::FLOAT: {
return attr_desc.f();
}
case paddle::framework::AttrType::STRING: {
return attr_desc.s();
}
case paddle::framework::AttrType::INTS: {
std::vector<int> val(attr_desc.ints_size());
for (int i = 0; i < attr_desc.ints_size(); ++i) {
val[i] = attr_desc.ints(i);
}
return val;
}
case paddle::framework::AttrType::FLOATS: {
std::vector<float> val(attr_desc.floats_size());
for (int i = 0; i < attr_desc.floats_size(); ++i) {
val[i] = attr_desc.floats(i);
}
return val;
}
case paddle::framework::AttrType::STRINGS: {
std::vector<std::string> val(attr_desc.strings_size());
for (int i = 0; i < attr_desc.strings_size(); ++i) {
val[i] = attr_desc.strings(i);
}
return val;
}
}
PADDLE_ENFORCE(false, "Unknown OpDesc::AttrDesc::type !");
return boost::blank();
}
} // namespace framework
} // namespace paddle
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include <boost/variant.hpp>
......@@ -6,6 +20,9 @@
#include <unordered_map>
#include <unordered_set>
#include <vector>
#include "paddle/framework/attribute.pb.h"
#include "paddle/framework/op_desc.pb.h"
#include "paddle/platform/enforce.h"
namespace paddle {
......@@ -14,13 +31,19 @@ namespace framework {
typedef boost::variant<boost::blank, int, float, std::string, std::vector<int>,
std::vector<float>, std::vector<std::string>>
Attribute;
typedef std::unordered_map<std::string, Attribute> AttributeMap;
template <typename T>
AttrType AttrTypeID();
Attribute GetAttrValue(const AttrDesc& attr_desc);
// check whether a value(attribute) fit a certain limit
template <typename T>
class LargerThanChecker {
public:
LargerThanChecker(T lower_bound) : lower_bound_(lower_bound) {}
explicit LargerThanChecker(T lower_bound) : lower_bound_(lower_bound) {}
void operator()(T& value) const {
PADDLE_ENFORCE(value > lower_bound_, "larger_than check fail");
}
......@@ -35,7 +58,8 @@ class LargerThanChecker {
template <typename T>
class DefaultValueSetter {
public:
DefaultValueSetter(T default_value) : default_value_(default_value) {}
explicit DefaultValueSetter(T default_value)
: default_value_(default_value) {}
void operator()(T& value) const { value = default_value_; }
private:
......@@ -78,7 +102,8 @@ class TypedAttrChecker {
typedef std::function<void(T&)> ValueChecker;
public:
TypedAttrChecker(const std::string& attr_name) : attr_name_(attr_name) {}
explicit TypedAttrChecker(const std::string& attr_name)
: attr_name_(attr_name) {}
TypedAttrChecker& InEnum(const std::unordered_set<T>& range) {
value_checkers_.push_back(EnumInContainer<T>(range));
......
......@@ -12,17 +12,17 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
syntax="proto2";
syntax = "proto2";
package paddle.framework;
// Attribute Type for paddle's Op.
// Op contains many attributes. Each type of attributes could be different.
// The AttrType will be shared between AttrDesc and AttrProto.
enum AttrType {
INT = 0;
FLOAT = 1;
STRING = 2;
INTS = 3;
FLOATS = 4;
STRINGS = 5;
INT = 0;
FLOAT = 1;
STRING = 2;
INTS = 3;
FLOATS = 4;
STRINGS = 5;
}
\ No newline at end of file
......@@ -59,19 +59,17 @@ std::shared_ptr<OperatorBase> BackwardRecursive(
// If all input gradients of forwarding operator do not need to calculate,
// just return an NOP. Not return null ptr because NOP does not take
// too much time for calculation, but it is useful for simplifying logic.
if (AllInSet(forwardOp.inputs_, OperatorBase::GRAD_VAR_SUFFIX(),
no_grad_names)) {
if (AllInSet(forwardOp.inputs_, kGradVarSuffix, no_grad_names)) {
return NOP();
}
// All output gradients of forwarding operator do not need to calculate.
// Then all input gradients cannot be computed at all, and we put them into
// `no_grad_names` set. Return an NOP.
if (AllInSet(forwardOp.outputs_, OperatorBase::GRAD_VAR_SUFFIX(),
no_grad_names)) {
if (AllInSet(forwardOp.outputs_, kGradVarSuffix, no_grad_names)) {
for (auto& name : forwardOp.inputs_) {
// Mark all input is not need
no_grad_names.insert(name + OperatorBase::GRAD_VAR_SUFFIX());
no_grad_names.insert(name + kGradVarSuffix);
}
return NOP();
}
......@@ -134,9 +132,9 @@ std::shared_ptr<OperatorBase> BackwardRecursive(
std::shared_ptr<OperatorBase> grad_op = OpRegistry::CreateGradOp(forwardOp);
for (std::string& grad_input : grad_op->inputs_) {
if (no_grad_names.count(grad_input)) {
std::string prefix = grad_input.substr(
0, grad_input.size() - OperatorBase::GRAD_VAR_SUFFIX().size());
grad_input = prefix + OperatorBase::ZERO_VAR_SUFFIX();
std::string prefix =
grad_input.substr(0, grad_input.size() - kGradVarSuffix.size());
grad_input = prefix + kZeroVarSuffix;
// If part of input gradient of that operator is not calculated, fill
// zero variables to that input gradient.
......@@ -147,7 +145,7 @@ std::shared_ptr<OperatorBase> BackwardRecursive(
for (std::string& grad_output : grad_op->outputs_) {
if (no_grad_names.count(grad_output)) {
grad_output = OperatorBase::EMPTY_VAR_NAME();
grad_output = kEmptyVarName;
}
}
......@@ -168,14 +166,14 @@ std::shared_ptr<OperatorBase> Backward(
std::unordered_set<std::string> no_grad_names;
no_grad_names.reserve(no_grad_vars.size());
no_grad_names.insert(OperatorBase::EMPTY_VAR_NAME() +
OperatorBase::GRAD_VAR_SUFFIX());
no_grad_names.insert(kEmptyVarName + kGradVarSuffix);
for (auto& name : no_grad_vars) {
no_grad_names.insert(name + OperatorBase::GRAD_VAR_SUFFIX());
no_grad_names.insert(name + kGradVarSuffix);
}
size_t uid = 0;
return BackwardRecursive(forwardOp, no_grad_names, uid);
}
} // namespace framework
} // namespace paddle
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
文件模式从 100644 更改为 100755
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册