@@ -34,7 +34,7 @@ PP-YOLOE is composed of following methods:
**Notes:**
- PP-YOLOE is trained on COCO train2017 dataset and evaluated on val2017 & test-dev2017 dataset,Box AP<sup>test</sup> is evaluation results of `mAP(IoU=0.5:0.95)`.
- PP-YOLOE used 8 GPUs for mixed precision training, if GPU number and mini-batch size is changed, learning rate and iteration times should be adjusted according [FAQ](https://github.com/PaddlePaddle/PaddleDetection/blob/develop/docs/tutorials/FAQ).
- PP-YOLOE used 8 GPUs for mixed precision training, if **GPU number** or **mini-batch size** is changed, **learning rate** should be adjusted according to the formula **lr<sub>new</sub> = lr<sub>default</sub> * (batch_size<sub>new</sub> * GPU_number<sub>new</sub>) / (batch_size<sub>default</sub> * GPU_number<sub>default</sub>)**.
- PP-YOLOE inference speed is tesed on single Tesla V100 with batch size as 1, **CUDA 10.2**, **CUDNN 7.6.5**, **TensorRT 6.0.1.8** in TensorRT mode.
- Refer to [Speed testing](#Speed-testing) to reproduce the speed testing results of PP-YOLOE.
- If you set `--run_benchmark=True`,you should install these dependencies at first, `pip install pynvml psutil GPUtil`.
...
...
@@ -49,7 +49,7 @@ Training PP-YOLOE with mixed precision on 8 GPUs with following command
- TensorRT will perform optimization for the current hardware platform according to the definition of the network, generate an inference engine and serialize it into a file. This inference engine is only applicable to the current hardware hardware platform. If your hardware and software platform has not changed, you can set `use_static=True` in [enable_tensorrt_engine](https://github.com/PaddlePaddle/PaddleDetection/blob/release/2.4/deploy/python/infer.py#L660). In this way, the serialized file generated will be saved in the `output_inference` folder, and the saved serialized file will be loaded the next time when TensorRT is executed.
- PaddleDetection release/2.4 and later versions will support NMS calling TensorRT, which requires PaddlePaddle release/2.3 and later versions.
- Here, we use [VisDrone](https://github.com/VisDrone/VisDrone-Dataset) dataset, and to detect 9 objects including `person, bicycles, car, van, truck, tricyle, awning-tricyle, bus, motor`.
- Above models trained using official default config, and load pretrained parameters on COCO dataset.
-*Due to the limited time, more verification results will be supplemented in the future. You are also welcome to contribute to PP-YOLOE*