Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleDetection
提交
5b1565a7
P
PaddleDetection
项目概览
PaddlePaddle
/
PaddleDetection
大约 1 年 前同步成功
通知
695
Star
11112
Fork
2696
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
184
列表
看板
标记
里程碑
合并请求
40
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
184
Issue
184
列表
看板
标记
里程碑
合并请求
40
合并请求
40
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
5b1565a7
编写于
4月 17, 2019
作者:
T
Tao Luo
提交者:
GitHub
4月 17, 2019
浏览文件
操作
浏览文件
下载
差异文件
Merge pull request #16875 from lidanqing-intel/lidanqing/improve_preprocess_script
Improve preprocessing script and read from tar
上级
c474e7dd
de02d40e
变更
1
隐藏空白更改
内联
并排
Showing
1 changed file
with
65 addition
and
74 deletion
+65
-74
paddle/fluid/inference/tests/api/full_ILSVRC2012_val_preprocess.py
...uid/inference/tests/api/full_ILSVRC2012_val_preprocess.py
+65
-74
未找到文件。
paddle/fluid/inference/tests/api/full_ILSVRC2012_val_preprocess.py
浏览文件 @
5b1565a7
...
...
@@ -19,10 +19,11 @@ import sys
import
random
import
functools
import
contextlib
from
PIL
import
Image
,
ImageEnhance
from
PIL
import
Image
import
math
from
paddle.dataset.common
import
download
,
md5file
from
paddle.dataset.common
import
download
import
tarfile
import
StringIO
random
.
seed
(
0
)
np
.
random
.
seed
(
0
)
...
...
@@ -32,9 +33,11 @@ SIZE_FLOAT32 = 4
SIZE_INT64
=
8
FULL_SIZE_BYTES
=
30106000008
FULL_IMAGES
=
50000
DATA_DIR_NAME
=
'ILSVRC2012'
IMG_DIR_NAME
=
'var'
TARGET_HASH
=
'8dc592db6dcc8d521e4d5ba9da5ca7d2'
TARGET_HASH
=
'22d2e0008dca693916d9595a5ea3ded8'
FOLDER_NAME
=
"ILSVRC2012/"
VALLIST_TAR_NAME
=
"ILSVRC2012/val_list.txt"
CHUNK_SIZE
=
8192
img_mean
=
np
.
array
([
0.485
,
0.456
,
0.406
]).
reshape
((
3
,
1
,
1
))
img_std
=
np
.
array
([
0.229
,
0.224
,
0.225
]).
reshape
((
3
,
1
,
1
))
...
...
@@ -62,8 +65,7 @@ def crop_image(img, target_size, center):
return
img
def
process_image
(
img_path
,
mode
,
color_jitter
,
rotate
):
img
=
Image
.
open
(
img_path
)
def
process_image
(
img
):
img
=
resize_short
(
img
,
target_size
=
256
)
img
=
crop_image
(
img
,
target_size
=
DATA_DIM
,
center
=
True
)
if
img
.
mode
!=
'RGB'
:
...
...
@@ -99,26 +101,11 @@ def download_concat(cache_folder, zip_path):
outfile
.
write
(
infile
.
read
())
def
extract
(
zip_path
,
extract_folder
):
data_dir
=
os
.
path
.
join
(
extract_folder
,
DATA_DIR_NAME
)
img_dir
=
os
.
path
.
join
(
data_dir
,
IMG_DIR_NAME
)
print
(
"Extracting...
\n
"
)
if
not
(
os
.
path
.
exists
(
img_dir
)
and
len
(
os
.
listdir
(
img_dir
))
==
FULL_IMAGES
):
tar
=
tarfile
.
open
(
zip_path
)
tar
.
extractall
(
path
=
extract_folder
)
tar
.
close
()
print
(
'Extracted. Full Imagenet Validation dataset is located at {0}
\n
'
.
format
(
data_dir
))
def
print_processbar
(
done
,
total
):
done_filled
=
done
*
'='
empty_filled
=
(
total
-
done
)
*
' '
percentage_done
=
done
*
100
/
total
def
print_processbar
(
done_percentage
):
done_filled
=
done_percentage
*
'='
empty_filled
=
(
100
-
done_percentage
)
*
' '
sys
.
stdout
.
write
(
"
\r
[%s%s]%d%%"
%
(
done_filled
,
empty_filled
,
percentage_don
e
))
(
done_filled
,
empty_filled
,
done_percentag
e
))
sys
.
stdout
.
flush
()
...
...
@@ -126,15 +113,13 @@ def check_integrity(filename, target_hash):
print
(
'
\n
The binary file exists. Checking file integrity...
\n
'
)
md
=
hashlib
.
md5
()
count
=
0
total_parts
=
50
chunk_size
=
8192
onepart
=
FULL_SIZE_BYTES
/
chunk_size
/
total_parts
onepart
=
FULL_SIZE_BYTES
/
CHUNK_SIZE
/
100
with
open
(
filename
)
as
ifs
:
while
True
:
buf
=
ifs
.
read
(
8192
)
buf
=
ifs
.
read
(
CHUNK_SIZE
)
if
count
%
onepart
==
0
:
done
=
count
/
onepart
print_processbar
(
done
,
total_parts
)
print_processbar
(
done
)
count
=
count
+
1
if
not
buf
:
break
...
...
@@ -146,54 +131,61 @@ def check_integrity(filename, target_hash):
return
False
def
convert
(
file_list
,
data_dir
,
output_file
):
def
convert
(
tar_file
,
output_file
):
print
(
'Converting 50000 images to binary file ...
\n
'
)
with
open
(
file_list
)
as
flist
:
lines
=
[
line
.
strip
()
for
line
in
flist
]
num_images
=
len
(
lines
)
with
open
(
output_file
,
"w+b"
)
as
ofs
:
#save num_images(int64_t) to file
ofs
.
seek
(
0
)
num
=
np
.
array
(
int
(
num_images
)).
astype
(
'int64'
)
ofs
.
write
(
num
.
tobytes
())
per_parts
=
1000
full_parts
=
FULL_IMAGES
/
per_parts
print_processbar
(
0
,
full_parts
)
for
idx
,
line
in
enumerate
(
lines
):
img_path
,
label
=
line
.
split
()
img_path
=
os
.
path
.
join
(
data_dir
,
img_path
)
if
not
os
.
path
.
exists
(
img_path
):
continue
#save image(float32) to file
img
=
process_image
(
img_path
,
'val'
,
color_jitter
=
False
,
rotate
=
False
)
np_img
=
np
.
array
(
img
)
ofs
.
seek
(
SIZE_INT64
+
SIZE_FLOAT32
*
DATA_DIM
*
DATA_DIM
*
3
*
idx
)
ofs
.
write
(
np_img
.
astype
(
'float32'
).
tobytes
())
ofs
.
flush
()
#save label(int64_t) to file
label_int
=
(
int
)(
label
)
np_label
=
np
.
array
(
label_int
)
ofs
.
seek
(
SIZE_INT64
+
SIZE_FLOAT32
*
DATA_DIM
*
DATA_DIM
*
3
*
num_images
+
idx
*
SIZE_INT64
)
ofs
.
write
(
np_label
.
astype
(
'int64'
).
tobytes
())
ofs
.
flush
()
if
(
idx
+
1
)
%
per_parts
==
0
:
done
=
(
idx
+
1
)
/
per_parts
print_processbar
(
done
,
full_parts
)
tar
=
tarfile
.
open
(
name
=
tar_file
,
mode
=
'r:gz'
)
print_processbar
(
0
)
dataset
=
{}
for
tarInfo
in
tar
:
if
tarInfo
.
isfile
()
and
tarInfo
.
name
!=
VALLIST_TAR_NAME
:
dataset
[
tarInfo
.
name
]
=
tar
.
extractfile
(
tarInfo
).
read
()
with
open
(
output_file
,
"w+b"
)
as
ofs
:
ofs
.
seek
(
0
)
num
=
np
.
array
(
int
(
FULL_IMAGES
)).
astype
(
'int64'
)
ofs
.
write
(
num
.
tobytes
())
per_percentage
=
FULL_IMAGES
/
100
idx
=
0
for
imagedata
in
dataset
.
values
():
img
=
Image
.
open
(
StringIO
.
StringIO
(
imagedata
))
img
=
process_image
(
img
)
np_img
=
np
.
array
(
img
)
ofs
.
write
(
np_img
.
astype
(
'float32'
).
tobytes
())
if
idx
%
per_percentage
==
0
:
print_processbar
(
idx
/
per_percentage
)
idx
=
idx
+
1
val_info
=
tar
.
getmember
(
VALLIST_TAR_NAME
)
val_list
=
tar
.
extractfile
(
val_info
).
read
()
lines
=
val_list
.
split
(
'
\n
'
)
val_dict
=
{}
for
line_idx
,
line
in
enumerate
(
lines
):
if
line_idx
==
FULL_IMAGES
:
break
name
,
label
=
line
.
split
()
val_dict
[
name
]
=
label
for
img_name
in
dataset
.
keys
():
remove_len
=
(
len
(
FOLDER_NAME
))
img_name_prim
=
img_name
[
remove_len
:]
label
=
val_dict
[
img_name_prim
]
label_int
=
(
int
)(
label
)
np_label
=
np
.
array
(
label_int
)
ofs
.
write
(
np_label
.
astype
(
'int64'
).
tobytes
())
print_processbar
(
100
)
tar
.
close
()
print
(
"Conversion finished."
)
def
run_convert
():
print
(
'Start to download and convert 50000 images to binary file...'
)
cache_folder
=
os
.
path
.
expanduser
(
'~/.cache/paddle/dataset/int8/download'
)
extract_folder
=
os
.
path
.
join
(
cache_folder
,
'full_data'
)
data_dir
=
os
.
path
.
join
(
extract_folder
,
DATA_DIR_NAME
)
file_list
=
os
.
path
.
join
(
data_dir
,
'val_list.txt'
)
zip_path
=
os
.
path
.
join
(
cache_folder
,
'full_imagenet_val.tar.gz'
)
zip_path
=
os
.
path
.
join
(
cache_folder
,
'full_imagenet_val.tar.gz.partaa'
)
output_file
=
os
.
path
.
join
(
cache_folder
,
'int8_full_val.bin'
)
retry
=
0
try_limit
=
3
...
...
@@ -213,8 +205,7 @@ def run_convert():
"Can not convert the dataset to binary file with try limit {0}"
.
format
(
try_limit
))
download_concat
(
cache_folder
,
zip_path
)
extract
(
zip_path
,
extract_folder
)
convert
(
file_list
,
data_dir
,
output_file
)
convert
(
zip_path
,
output_file
)
print
(
"
\n
Success! The binary file can be found at {0}"
.
format
(
output_file
))
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录