Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleDetection
提交
5aea2cd2
P
PaddleDetection
项目概览
PaddlePaddle
/
PaddleDetection
大约 1 年 前同步成功
通知
695
Star
11112
Fork
2696
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
184
列表
看板
标记
里程碑
合并请求
40
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
184
Issue
184
列表
看板
标记
里程碑
合并请求
40
合并请求
40
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
5aea2cd2
编写于
2月 19, 2019
作者:
T
tensor-tang
提交者:
GitHub
2月 19, 2019
浏览文件
操作
浏览文件
下载
差异文件
Merge pull request #15652 from tensor-tang/refine/pyramiddnn
refine fused emb seq pool
上级
adea672b
75fc792d
变更
17
隐藏空白更改
内联
并排
Showing
17 changed file
with
487 addition
and
41 deletion
+487
-41
paddle/fluid/operators/fused/fused_embedding_seq_pool_op.h
paddle/fluid/operators/fused/fused_embedding_seq_pool_op.h
+14
-21
paddle/fluid/operators/jit/benchmark.cc
paddle/fluid/operators/jit/benchmark.cc
+36
-0
paddle/fluid/operators/jit/gen/CMakeLists.txt
paddle/fluid/operators/jit/gen/CMakeLists.txt
+1
-0
paddle/fluid/operators/jit/gen/embseqpool.cc
paddle/fluid/operators/jit/gen/embseqpool.cc
+149
-0
paddle/fluid/operators/jit/gen/embseqpool.h
paddle/fluid/operators/jit/gen/embseqpool.h
+81
-0
paddle/fluid/operators/jit/gen/seqpool.h
paddle/fluid/operators/jit/gen/seqpool.h
+1
-1
paddle/fluid/operators/jit/helper.cc
paddle/fluid/operators/jit/helper.cc
+1
-0
paddle/fluid/operators/jit/helper.h
paddle/fluid/operators/jit/helper.h
+9
-0
paddle/fluid/operators/jit/kernel_base.h
paddle/fluid/operators/jit/kernel_base.h
+47
-19
paddle/fluid/operators/jit/kernel_key.cc
paddle/fluid/operators/jit/kernel_key.cc
+5
-0
paddle/fluid/operators/jit/more/mkl/CMakeLists.txt
paddle/fluid/operators/jit/more/mkl/CMakeLists.txt
+1
-0
paddle/fluid/operators/jit/more/mkl/mkl.cc
paddle/fluid/operators/jit/more/mkl/mkl.cc
+11
-0
paddle/fluid/operators/jit/more/mkl/mkl.h
paddle/fluid/operators/jit/more/mkl/mkl.h
+29
-0
paddle/fluid/operators/jit/refer/CMakeLists.txt
paddle/fluid/operators/jit/refer/CMakeLists.txt
+1
-0
paddle/fluid/operators/jit/refer/refer.cc
paddle/fluid/operators/jit/refer/refer.cc
+2
-0
paddle/fluid/operators/jit/refer/refer.h
paddle/fluid/operators/jit/refer/refer.h
+34
-0
paddle/fluid/operators/jit/test.cc
paddle/fluid/operators/jit/test.cc
+65
-0
未找到文件。
paddle/fluid/operators/fused/fused_embedding_seq_pool_op.h
浏览文件 @
5aea2cd2
...
...
@@ -21,6 +21,7 @@ limitations under the License. */
#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/selected_rows.h"
#include "paddle/fluid/operators/jit/kernels.h"
#include "paddle/fluid/operators/math/blas.h"
namespace
paddle
{
...
...
@@ -37,32 +38,24 @@ struct EmbeddingVSumFunctor {
const
LoDTensor
*
table_t
,
const
LoDTensor
*
ids_t
,
LoDTensor
*
output_t
)
{
auto
*
table
=
table_t
->
data
<
T
>
();
int64_t
row_number
=
table_t
->
dims
()[
0
];
int64_t
row
_width
=
table_t
->
dims
()[
1
];
int64_t
last_dim
=
output_t
->
dims
()[
1
];
int64_t
table_height
=
table_t
->
dims
()[
0
];
int64_t
table
_width
=
table_t
->
dims
()[
1
];
int64_t
out_width
=
output_t
->
dims
()[
1
];
const
int64_t
*
ids
=
ids_t
->
data
<
int64_t
>
();
auto
ids_lod
=
ids_t
->
lod
()[
0
];
int64_t
ids_count
=
ids_t
->
numel
()
/
ids_lod
.
back
();
int64_t
idx_width
=
ids_t
->
numel
()
/
ids_lod
.
back
();
auto
*
output
=
output_t
->
mutable_data
<
T
>
(
context
.
GetPlace
());
auto
blas
=
math
::
GetBlas
<
platform
::
CPUDeviceContext
,
T
>
(
context
);
for
(
int64_t
i
=
0
;
i
!=
ids_lod
.
size
()
-
1
;
++
i
)
{
size_t
begin
=
ids_lod
[
i
]
*
ids_count
;
for
(
int64_t
j
=
0
;
j
!=
ids_count
;
++
j
)
{
PADDLE_ENFORCE_LT
(
ids
[
begin
],
row_number
);
PADDLE_ENFORCE_GE
(
ids
[
begin
],
0
,
"ids %d"
,
i
);
blas
.
VCOPY
(
row_width
,
table
+
ids
[
begin
+
j
]
*
row_width
,
output
+
i
*
last_dim
+
j
*
row_width
);
}
PADDLE_ENFORCE_LE
(
table_width
*
idx_width
,
out_width
);
for
(
int64_t
r
=
(
ids_lod
[
i
]
+
1
)
*
ids_count
;
r
<
ids_lod
[
i
+
1
]
*
ids_count
;
++
r
)
{
PADDLE_ENFORCE_LT
(
ids
[
r
],
row_number
);
PADDLE_ENFORCE_GE
(
ids
[
r
],
0
,
"ids %d"
,
i
);
blas
.
AXPY
(
row_width
,
1.
,
table
+
ids
[
r
]
*
row_width
,
output
+
i
*
last_dim
+
(
r
%
ids_count
)
*
row_width
);
}
jit
::
emb_seq_pool_attr_t
attr
(
table_height
,
table_width
,
0
,
idx_width
,
out_width
,
jit
::
SeqPoolType
::
kSum
);
for
(
int64_t
i
=
0
;
i
!=
ids_lod
.
size
()
-
1
;
++
i
)
{
attr
.
index_height
=
ids_lod
[
i
+
1
]
-
ids_lod
[
i
];
auto
emb_seqpool
=
jit
::
Get
<
jit
::
kEmbSeqPool
,
jit
::
EmbSeqPoolTuples
<
T
>
,
platform
::
CPUPlace
>
(
attr
);
emb_seqpool
(
table
,
ids
+
ids_lod
[
i
]
*
idx_width
,
output
+
i
*
out_width
,
&
attr
);
}
}
};
...
...
paddle/fluid/operators/jit/benchmark.cc
浏览文件 @
5aea2cd2
...
...
@@ -301,6 +301,37 @@ void BenchSeqPoolKernel() {
}
}
template
<
jit
::
KernelType
KT
,
typename
T
,
typename
PlaceType
>
void
BenchEmbSeqPoolKernel
()
{
std
::
vector
<
jit
::
SeqPoolType
>
pool_types
=
{
jit
::
SeqPoolType
::
kSum
};
int64_t
tbl_h
=
1e4
;
for
(
int
tbl_w
:
{
10
,
16
,
256
})
{
Tensor
table
;
table
.
Resize
({
tbl_h
,
tbl_w
});
RandomVec
<
T
>
(
tbl_h
*
tbl_w
,
table
.
mutable_data
<
T
>
(
PlaceType
()),
-
2.
f
,
2.
f
);
const
T
*
table_data
=
table
.
data
<
T
>
();
for
(
auto
type
:
pool_types
)
{
for
(
int
idx_w
:
{
1
,
2
,
10
,
16
})
{
for
(
int
idx_h
:
{
1
,
2
,
9
,
13
,
16
})
{
int64_t
out_w
=
tbl_w
*
idx_w
;
jit
::
emb_seq_pool_attr_t
attr
(
tbl_h
,
tbl_w
,
idx_h
,
idx_w
,
out_w
,
type
);
Tensor
idx
,
out
;
idx
.
Resize
({
idx_h
,
idx_w
});
out
.
Resize
({
out_w
});
RandomVec
<
int64_t
>
(
idx_h
*
idx_w
,
idx
.
mutable_data
<
int64_t
>
(
PlaceType
()),
0
,
tbl_h
-
1
);
const
int64_t
*
idx_data
=
idx
.
data
<
int64_t
>
();
T
*
o_data
=
out
.
mutable_data
<
T
>
(
PlaceType
());
BenchAllImpls
<
KT
,
jit
::
EmbSeqPoolTuples
<
T
>
,
PlaceType
>
(
attr
,
table_data
,
idx_data
,
o_data
,
&
attr
);
}
}
}
}
}
template
<
jit
::
KernelType
KT
,
typename
T
,
typename
PlaceType
>
void
BenchMatMulKernel
()
{
for
(
int
m
:
{
1
,
2
,
3
,
4
})
{
...
...
@@ -441,6 +472,11 @@ BENCH_FP32_CPU(kGRUHtPart2) { BenchGRUKernel<jit::kGRUHtPart2, T, CPUPlace>(); }
// seq pool function
BENCH_FP32_CPU
(
kSeqPool
)
{
BenchSeqPoolKernel
<
jit
::
kSeqPool
,
T
,
CPUPlace
>
();
}
// embedding seq pool function
BENCH_FP32_CPU
(
kEmbSeqPool
)
{
BenchEmbSeqPoolKernel
<
jit
::
kEmbSeqPool
,
T
,
CPUPlace
>
();
}
// matmul
BENCH_FP32_CPU
(
kMatMul
)
{
BenchMatMulKernel
<
jit
::
kMatMul
,
T
,
CPUPlace
>
();
}
...
...
paddle/fluid/operators/jit/gen/CMakeLists.txt
浏览文件 @
5aea2cd2
...
...
@@ -31,3 +31,4 @@ USE_JITKERNEL_GEN(kNCHW16CMulNC)
USE_JITKERNEL_GEN
(
kSeqPool
)
USE_JITKERNEL_GEN
(
kHMax
)
USE_JITKERNEL_GEN
(
kHSum
)
USE_JITKERNEL_GEN
(
kEmbSeqPool
)
paddle/fluid/operators/jit/gen/embseqpool.cc
0 → 100644
浏览文件 @
5aea2cd2
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License. */
#include "paddle/fluid/operators/jit/gen/embseqpool.h"
#include <stddef.h> // offsetof
#include <vector>
#include "paddle/fluid/operators/jit/gen/act.h" // for exp_float_consts ones
#include "paddle/fluid/operators/jit/registry.h"
#include "paddle/fluid/platform/cpu_info.h"
namespace
paddle
{
namespace
operators
{
namespace
jit
{
namespace
gen
{
void
EmbSeqPoolJitCode
::
genCode
()
{
preCode
();
constexpr
int
block
=
YMM_FLOAT_BLOCK
;
constexpr
int
max_num_regs
=
8
;
const
int
num_block
=
tbl_w_
/
block
;
const
int
num_groups
=
num_block
/
max_num_regs
;
const
size_t
block_size
=
sizeof
(
float
)
*
block
;
std
::
vector
<
int
>
groups
(
num_groups
,
max_num_regs
);
int
rest_num_regs
=
num_block
%
max_num_regs
;
if
(
rest_num_regs
>
0
)
{
groups
.
push_back
(
rest_num_regs
);
}
// protect param_dst
mov
(
reg_ptr_param_dst
,
param_dst
);
mov
(
reg_idx_width_in_byte
,
qword
[
param_attr
+
offsetof
(
emb_seq_pool_attr_t
,
index_width
)]);
mov
(
reg_idx_height
,
qword
[
param_attr
+
offsetof
(
emb_seq_pool_attr_t
,
index_height
)]);
mov
(
rax
,
sizeof
(
int64_t
));
mul
(
reg_idx_width_in_byte
);
mov
(
reg_idx_width_in_byte
,
rax
);
const
size_t
tbl_width_in_byte
=
sizeof
(
float
)
*
tbl_w_
;
int
acc_num_regs
=
0
;
for
(
int
num_regs
:
groups
)
{
Label
l_next_idx_w
,
l_next_idx_h
,
l_save_now
;
xor_
(
reg_idx_w_i_in_byte
,
reg_idx_w_i_in_byte
);
mov
(
reg_ptr_dst_i
,
reg_ptr_param_dst
);
add
(
reg_ptr_dst_i
,
acc_num_regs
*
block_size
);
L
(
l_next_idx_w
);
{
// h == 0
mov
(
reg_ptr_idx_i
,
param_idx
);
add
(
reg_ptr_idx_i
,
reg_idx_w_i_in_byte
);
mov
(
reg_idx
,
qword
[
reg_ptr_idx_i
]);
mov
(
rax
,
tbl_width_in_byte
);
mul
(
reg_idx
);
mov
(
reg_ptr_tbl_i
,
rax
);
// reg is offset now
add
(
reg_ptr_tbl_i
,
param_tbl
);
// reg is ptr_i now
size_t
w_offset
=
0
;
for
(
int
reg_i
=
0
;
reg_i
<
num_regs
;
++
reg_i
)
{
vmovups
(
ymm_t
(
reg_i
+
num_regs
),
ptr
[
reg_ptr_tbl_i
+
w_offset
]);
w_offset
+=
block_size
;
}
add
(
reg_ptr_idx_i
,
reg_idx_width_in_byte
);
// end condition of idx h
mov
(
reg_idx_h_end
,
reg_idx_height
);
mov
(
rax
,
reg_idx_width_in_byte
);
mul
(
reg_idx_h_end
);
mov
(
reg_idx_h_end
,
rax
);
add
(
reg_idx_h_end
,
reg_idx_w_i_in_byte
);
add
(
reg_idx_h_end
,
param_idx
);
cmp
(
reg_ptr_idx_i
,
reg_idx_h_end
);
jge
(
l_save_now
,
T_NEAR
);
L
(
l_next_idx_h
);
{
mov
(
reg_idx
,
qword
[
reg_ptr_idx_i
]);
mov
(
reg_ptr_tbl_i
,
reg_idx
);
mov
(
rax
,
tbl_width_in_byte
);
mul
(
reg_idx
);
mov
(
reg_ptr_tbl_i
,
rax
);
add
(
reg_ptr_tbl_i
,
param_tbl
);
size_t
w_offset
=
0
;
for
(
int
reg_i
=
0
;
reg_i
<
num_regs
;
++
reg_i
)
{
vmovups
(
ymm_t
(
reg_i
),
ptr
[
reg_ptr_tbl_i
+
w_offset
]);
vaddps
(
ymm_t
(
reg_i
+
num_regs
),
ymm_t
(
reg_i
+
num_regs
),
ymm_t
(
reg_i
));
w_offset
+=
block_size
;
}
add
(
reg_ptr_idx_i
,
reg_idx_width_in_byte
);
cmp
(
reg_ptr_idx_i
,
reg_idx_h_end
);
jl
(
l_next_idx_h
,
T_NEAR
);
}
// end of idx h
L
(
l_save_now
);
// avg or sqrt here, if needed
w_offset
=
0
;
for
(
int
reg_i
=
0
;
reg_i
<
num_regs
;
++
reg_i
)
{
vmovups
(
ptr
[
reg_ptr_dst_i
+
w_offset
],
ymm_t
(
reg_i
+
num_regs
));
w_offset
+=
block_size
;
}
add
(
reg_ptr_dst_i
,
tbl_width_in_byte
);
add
(
reg_idx_w_i_in_byte
,
sizeof
(
int64_t
));
cmp
(
reg_idx_w_i_in_byte
,
reg_idx_width_in_byte
);
jl
(
l_next_idx_w
,
T_NEAR
);
}
// end of idx w
acc_num_regs
+=
num_regs
;
add
(
param_tbl
,
num_regs
*
block_size
);
// do not use acc_num_regs
}
// end of groups
postCode
();
}
class
EmbSeqPoolCreator
:
public
JitCodeCreator
<
emb_seq_pool_attr_t
>
{
public:
bool
UseMe
(
const
emb_seq_pool_attr_t
&
attr
)
const
override
{
return
platform
::
MayIUse
(
platform
::
avx
)
&&
attr
.
table_width
%
YMM_FLOAT_BLOCK
==
0
;
}
size_t
CodeSize
(
const
emb_seq_pool_attr_t
&
attr
)
const
override
{
return
96
+
(
attr
.
table_width
/
YMM_FLOAT_BLOCK
)
*
96
*
8
;
}
std
::
unique_ptr
<
GenBase
>
CreateJitCode
(
const
emb_seq_pool_attr_t
&
attr
)
const
override
{
PADDLE_ENFORCE_GT
(
attr
.
table_height
,
0
);
PADDLE_ENFORCE_GT
(
attr
.
table_width
,
0
);
PADDLE_ENFORCE_GT
(
attr
.
index_height
,
0
);
PADDLE_ENFORCE_GT
(
attr
.
index_width
,
0
);
PADDLE_ENFORCE_GT
(
attr
.
out_width
,
0
);
return
make_unique
<
EmbSeqPoolJitCode
>
(
attr
,
CodeSize
(
attr
));
}
};
}
// namespace gen
}
// namespace jit
}
// namespace operators
}
// namespace paddle
namespace
gen
=
paddle
::
operators
::
jit
::
gen
;
REGISTER_JITKERNEL_GEN
(
kEmbSeqPool
,
gen
::
EmbSeqPoolCreator
);
paddle/fluid/operators/jit/gen/embseqpool.h
0 → 100644
浏览文件 @
5aea2cd2
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License. */
#pragma once
#include <string>
#include "glog/logging.h"
#include "paddle/fluid/operators/jit/gen/jitcode.h"
#include "paddle/fluid/platform/enforce.h"
namespace
paddle
{
namespace
operators
{
namespace
jit
{
namespace
gen
{
class
EmbSeqPoolJitCode
:
public
JitCode
{
public:
explicit
EmbSeqPoolJitCode
(
const
emb_seq_pool_attr_t
&
attr
,
size_t
code_size
=
256
*
1024
,
void
*
code_ptr
=
nullptr
)
:
JitCode
(
code_size
,
code_ptr
),
tbl_w_
(
attr
.
table_width
),
type_
(
attr
.
pool_type
)
{
if
(
type_
!=
SeqPoolType
::
kSum
)
{
LOG
(
FATAL
)
<<
"Only support sum pool yet "
;
}
this
->
genCode
();
}
std
::
string
name
()
const
override
{
std
::
string
base
=
"EmbSeqPoolJitCode"
;
if
(
type_
==
SeqPoolType
::
kSum
)
{
base
+=
"_Sum"
;
}
else
if
(
type_
==
SeqPoolType
::
kAvg
)
{
base
+=
"_Avg"
;
}
else
if
(
type_
==
SeqPoolType
::
kSqrt
)
{
base
+=
"_Sqrt"
;
}
base
+=
(
"_W"
+
std
::
to_string
(
tbl_w_
));
return
base
;
}
void
genCode
()
override
;
private:
int
tbl_w_
;
SeqPoolType
type_
;
reg64_t
param_tbl
{
abi_param1
};
reg64_t
param_idx
{
abi_param2
};
reg64_t
param_dst
{
abi_param3
};
reg64_t
param_attr
{
abi_param4
};
reg64_t
reg_tmp
{
rax
};
reg64_t
reg_idx_width_in_byte
{
r8
};
reg64_t
reg_idx_height
{
r9
};
reg64_t
reg_ptr_tbl_i
{
r10
};
reg64_t
reg_idx
{
r10
};
// could use same of reg_ptr_tbl_i
reg64_t
reg_ptr_idx_i
{
r11
};
reg64_t
reg_ptr_dst_i
{
r12
};
reg64_t
reg_ptr_param_dst
{
r13
};
// rdx is used in mul so protect param_dst
reg64_t
reg_idx_w_i_in_byte
{
r14
};
reg64_t
reg_idx_h_end
{
r15
};
};
}
// namespace gen
}
// namespace jit
}
// namespace operators
}
// namespace paddle
paddle/fluid/operators/jit/gen/seqpool.h
浏览文件 @
5aea2cd2
...
...
@@ -32,7 +32,7 @@ class SeqPoolJitCode : public JitCode {
:
JitCode
(
code_size
,
code_ptr
),
w_
(
attr
.
w
),
type_
(
attr
.
type
)
{
if
(
!
(
type_
==
SeqPoolType
::
kSum
||
type_
==
SeqPoolType
::
kAvg
||
type_
==
SeqPoolType
::
kSqrt
))
{
LOG
(
FATAL
)
<<
"Only support
sum pool yet
"
;
LOG
(
FATAL
)
<<
"Only support
ed pool type: sum, avg and sqrt.
"
;
}
fp_h_
[
0
]
=
1.
f
;
this
->
genCode
();
...
...
paddle/fluid/operators/jit/helper.cc
浏览文件 @
5aea2cd2
...
...
@@ -54,6 +54,7 @@ const char* to_string(KernelType kt) {
ONE_CASE
(
kHMax
);
ONE_CASE
(
kHSum
);
ONE_CASE
(
kSoftmax
);
ONE_CASE
(
kEmbSeqPool
);
default:
PADDLE_THROW
(
"Not support type: %d, or forget to add it."
,
kt
);
return
"NOT JITKernel"
;
...
...
paddle/fluid/operators/jit/helper.h
浏览文件 @
5aea2cd2
...
...
@@ -172,6 +172,15 @@ inline std::ostream& operator<<(std::ostream& os, const seq_pool_attr_t& attr) {
return
os
;
}
inline
std
::
ostream
&
operator
<<
(
std
::
ostream
&
os
,
const
emb_seq_pool_attr_t
&
attr
)
{
os
<<
"table_height["
<<
attr
.
table_height
<<
"],table_width["
<<
attr
.
table_width
<<
"],index_height["
<<
attr
.
index_height
<<
"],index_width["
<<
attr
.
index_width
<<
"],output_width["
<<
attr
.
out_width
<<
"],pool_type["
<<
to_string
(
attr
.
pool_type
)
<<
"]"
;
return
os
;
}
inline
std
::
ostream
&
operator
<<
(
std
::
ostream
&
os
,
const
matmul_attr_t
&
attr
)
{
os
<<
"M["
<<
attr
.
m
<<
"],N["
<<
attr
.
n
<<
"],K["
<<
attr
.
k
<<
"]"
;
return
os
;
...
...
paddle/fluid/operators/jit/kernel_base.h
浏览文件 @
5aea2cd2
...
...
@@ -13,6 +13,7 @@
* limitations under the License. */
#pragma once
#include <cstdint>
#include "paddle/fluid/operators/jit/macro.h"
#include "paddle/fluid/platform/macros.h"
...
...
@@ -20,34 +21,35 @@ namespace paddle {
namespace
operators
{
namespace
jit
{
// TODO(TJ): reorder by alphabet
typedef
enum
{
kNone
=
0
,
kVMul
=
1
,
kVAdd
=
2
,
kVAddRelu
,
kVSub
,
kVScal
,
kVAddBias
,
kVRelu
,
kVIdentity
,
kVSquare
,
kVExp
,
kVSigmoid
,
kVTanh
,
kLSTMCtHt
,
kLSTMC1H1
,
// sort by alphabet
kCRFDecoding
=
1
,
kEmbSeqPool
=
2
,
kGRUH1
,
kGRUHtPart1
,
kGRUHtPart2
,
kCRFDecoding
,
kHSum
,
// horizontal max
kHMax
,
// horizontal sum
kLSTMCtHt
,
kLSTMC1H1
,
kLayerNorm
,
kMatMul
,
kNCHW16CMulNC
,
kSeqPool
,
kMatMul
,
kHSum
,
// horizontal max
kHMax
,
// horizontal sum
kSoftmax
,
kVAdd
,
kVAddBias
,
kVAddRelu
,
kVExp
,
kVIdentity
,
kVMul
,
kVRelu
,
kVScal
,
kVSigmoid
,
kVSquare
,
kVSub
,
kVTanh
,
}
KernelType
;
typedef
enum
{
...
...
@@ -145,6 +147,32 @@ struct SeqPoolTuples {
typedef
void
(
*
func_type
)(
const
T
*
,
T
*
,
const
seq_pool_attr_t
*
);
};
typedef
struct
emb_seq_pool_attr_s
{
int64_t
table_height
,
table_width
;
int64_t
index_height
,
index_width
;
int64_t
out_width
;
SeqPoolType
pool_type
;
emb_seq_pool_attr_s
()
=
default
;
explicit
emb_seq_pool_attr_s
(
int64_t
tbl_height
,
int64_t
tbl_width
,
int64_t
idx_height
,
int64_t
idx_width
,
int64_t
output_width
,
SeqPoolType
seqpool_type
=
SeqPoolType
::
kSum
)
:
table_height
(
tbl_height
),
table_width
(
tbl_width
),
index_height
(
idx_height
),
index_width
(
idx_width
),
out_width
(
output_width
),
pool_type
(
seqpool_type
)
{}
}
emb_seq_pool_attr_t
;
template
<
typename
T
>
struct
EmbSeqPoolTuples
{
typedef
T
data_type
;
typedef
emb_seq_pool_attr_t
attr_type
;
typedef
void
(
*
func_type
)(
const
T
*
,
const
int64_t
*
,
T
*
,
const
emb_seq_pool_attr_t
*
);
};
typedef
struct
matmul_attr_s
{
int
m
,
n
,
k
;
void
*
packed_weight
{
nullptr
};
...
...
paddle/fluid/operators/jit/kernel_key.cc
浏览文件 @
5aea2cd2
...
...
@@ -56,6 +56,11 @@ size_t JitCodeKey<matmul_attr_t>(const matmul_attr_t& attr) {
return
(
key
<<
shift
*
2
)
+
((
static_cast
<
size_t
>
(
attr
.
n
))
<<
shift
)
+
attr
.
k
;
}
template
<
>
size_t
JitCodeKey
<
emb_seq_pool_attr_t
>
(
const
emb_seq_pool_attr_t
&
attr
)
{
return
attr
.
table_width
;
}
}
// namespace jit
}
// namespace operators
}
// namespace paddle
paddle/fluid/operators/jit/more/mkl/CMakeLists.txt
浏览文件 @
5aea2cd2
...
...
@@ -13,3 +13,4 @@ USE_JITKERNEL_MORE(kVSigmoid, mkl)
USE_JITKERNEL_MORE
(
kVTanh, mkl
)
USE_JITKERNEL_MORE
(
kSeqPool, mkl
)
USE_JITKERNEL_MORE
(
kSoftmax, mkl
)
USE_JITKERNEL_MORE
(
kEmbSeqPool, mkl
)
paddle/fluid/operators/jit/more/mkl/mkl.cc
浏览文件 @
5aea2cd2
...
...
@@ -174,6 +174,16 @@ bool SeqPoolKernel<double>::UseMe(const seq_pool_attr_t& attr) const {
return
true
;
}
template
<
>
bool
EmbSeqPoolKernel
<
float
>::
UseMe
(
const
emb_seq_pool_attr_t
&
attr
)
const
{
return
true
;
}
template
<
>
bool
EmbSeqPoolKernel
<
double
>::
UseMe
(
const
emb_seq_pool_attr_t
&
attr
)
const
{
return
true
;
}
template
<
>
bool
MatMulKernel
<
float
>::
UseMe
(
const
matmul_attr_t
&
attr
)
const
{
return
platform
::
MayIUse
(
platform
::
avx
);
...
...
@@ -227,6 +237,7 @@ REGISTER_MKL_KERNEL(kVSquare, VSquare);
REGISTER_MKL_KERNEL
(
kVSigmoid
,
VSigmoid
);
REGISTER_MKL_KERNEL
(
kVTanh
,
VTanh
);
REGISTER_MKL_KERNEL
(
kSeqPool
,
SeqPool
);
REGISTER_MKL_KERNEL
(
kEmbSeqPool
,
EmbSeqPool
);
REGISTER_MKL_KERNEL
(
kSoftmax
,
Softmax
);
#undef REGISTER_MKL_KERNEL
paddle/fluid/operators/jit/more/mkl/mkl.h
浏览文件 @
5aea2cd2
...
...
@@ -18,6 +18,7 @@
#include <type_traits>
#include <vector>
#include "paddle/fluid/operators/jit/kernel_base.h"
#include "paddle/fluid/platform/enforce.h"
namespace
paddle
{
namespace
operators
{
...
...
@@ -91,6 +92,32 @@ void SeqPool(const T* x, T* y, const seq_pool_attr_t* attr) {
}
}
template
<
typename
T
>
void
EmbSeqPool
(
const
T
*
table
,
const
int64_t
*
idx
,
T
*
out
,
const
emb_seq_pool_attr_t
*
attr
)
{
PADDLE_ENFORCE_EQ
(
attr
->
table_width
*
attr
->
index_width
,
attr
->
out_width
);
auto
check_idx_value_valid
=
[
&
](
int64_t
i
)
{
PADDLE_ENFORCE_LT
(
idx
[
i
],
attr
->
table_height
,
"idx value: %d, i: %d"
,
idx
[
i
],
i
);
PADDLE_ENFORCE_GE
(
idx
[
i
],
0
,
"idx value: %d, i: %d"
,
idx
[
i
],
i
);
};
for
(
int64_t
w
=
0
;
w
!=
attr
->
index_width
;
++
w
)
{
check_idx_value_valid
(
w
);
VCopy
<
T
>
(
table
+
idx
[
w
]
*
attr
->
table_width
,
out
+
w
*
attr
->
table_width
,
attr
->
table_width
);
}
for
(
int64_t
h
=
1
;
h
<
attr
->
index_height
;
++
h
)
{
for
(
int64_t
w
=
0
;
w
<
attr
->
index_width
;
++
w
)
{
int64_t
i
=
h
*
attr
->
index_width
+
w
;
check_idx_value_valid
(
i
);
VAXPY
<
T
>
(
static_cast
<
T
>
(
1
),
table
+
idx
[
i
]
*
attr
->
table_width
,
out
+
w
*
attr
->
table_width
,
attr
->
table_width
);
}
}
}
template
<
typename
T
>
void
ASum
(
const
T
*
x
,
T
*
res
,
int
n
);
...
...
@@ -142,6 +169,8 @@ DECLARE_MKL_KERNEL(VSquare, XYNTuples);
DECLARE_MKL_KERNEL
(
SeqPool
,
SeqPoolTuples
);
DECLARE_MKL_KERNEL
(
EmbSeqPool
,
EmbSeqPoolTuples
);
DECLARE_MKL_KERNEL
(
Softmax
,
SoftmaxTuples
);
#undef DECLARE_MKL_KERNEL
...
...
paddle/fluid/operators/jit/refer/CMakeLists.txt
浏览文件 @
5aea2cd2
...
...
@@ -32,3 +32,4 @@ USE_JITKERNEL_REFER(kVSquare)
USE_JITKERNEL_REFER
(
kHSum
)
USE_JITKERNEL_REFER
(
kHMax
)
USE_JITKERNEL_REFER
(
kSoftmax
)
USE_JITKERNEL_REFER
(
kEmbSeqPool
)
paddle/fluid/operators/jit/refer/refer.cc
浏览文件 @
5aea2cd2
...
...
@@ -57,4 +57,6 @@ REGISTER_REFER_KERNEL(kHSum, HSum);
REGISTER_REFER_KERNEL
(
kSoftmax
,
Softmax
);
REGISTER_REFER_KERNEL
(
kEmbSeqPool
,
EmbSeqPool
);
#undef REGISTER_REFER_KERNEL
paddle/fluid/operators/jit/refer/refer.h
浏览文件 @
5aea2cd2
...
...
@@ -16,6 +16,7 @@
#include <cmath>
#include <limits>
#include <string>
#include "paddle/fluid/operators/jit/helper.h"
#include "paddle/fluid/operators/jit/kernel_base.h"
#include "paddle/fluid/platform/enforce.h"
...
...
@@ -414,6 +415,37 @@ void Softmax(const T* x, T* y, int n, int bs = 1) {
}
}
// embedding seq pool
// table is a matrix with (tbl_h, tbl_w)
// idx is a matrix with (idx_h, idx_w)
// output is a vector with length tbl_w * idx_w
template
<
typename
T
>
void
EmbSeqPool
(
const
T
*
table
,
const
int64_t
*
idx
,
T
*
out
,
const
emb_seq_pool_attr_t
*
attr
)
{
PADDLE_ENFORCE_EQ
(
attr
->
table_width
*
attr
->
index_width
,
attr
->
out_width
);
auto
check_idx_value_valid
=
[
&
](
int64_t
i
)
{
PADDLE_ENFORCE_LT
(
idx
[
i
],
attr
->
table_height
,
"idx value: %d, i: %d"
,
idx
[
i
],
i
);
PADDLE_ENFORCE_GE
(
idx
[
i
],
0
,
"idx value: %d, i: %d"
,
idx
[
i
],
i
);
};
for
(
int64_t
w
=
0
;
w
!=
attr
->
index_width
;
++
w
)
{
check_idx_value_valid
(
w
);
std
::
memcpy
(
out
+
w
*
attr
->
table_width
,
table
+
idx
[
w
]
*
attr
->
table_width
,
attr
->
table_width
*
sizeof
(
T
));
}
for
(
int64_t
h
=
1
;
h
<
attr
->
index_height
;
++
h
)
{
for
(
int64_t
w
=
0
;
w
<
attr
->
index_width
;
++
w
)
{
int64_t
i
=
h
*
attr
->
index_width
+
w
;
check_idx_value_valid
(
i
);
VAdd
(
table
+
idx
[
i
]
*
attr
->
table_width
,
out
+
w
*
attr
->
table_width
,
out
+
w
*
attr
->
table_width
,
attr
->
table_width
);
}
}
}
#define DECLARE_REFER_KERNEL(name, tuples) \
template <typename T> \
class name##Kernel : public ReferKernel<tuples<T>> { \
...
...
@@ -462,6 +494,8 @@ DECLARE_REFER_KERNEL(HSum, XRNTuples);
DECLARE_REFER_KERNEL
(
Softmax
,
SoftmaxTuples
);
DECLARE_REFER_KERNEL
(
EmbSeqPool
,
EmbSeqPoolTuples
);
#undef DECLARE_REFER_KERNEL
}
// namespace refer
...
...
paddle/fluid/operators/jit/test.cc
浏览文件 @
5aea2cd2
...
...
@@ -270,6 +270,32 @@ struct TestFuncWithRefer<jit::SeqPoolTuples<T>, std::vector<T>, std::vector<T>,
}
};
template
<
typename
T
>
struct
TestFuncWithRefer
<
jit
::
EmbSeqPoolTuples
<
T
>
,
std
::
vector
<
T
>
,
std
::
vector
<
int64_t
>
,
std
::
vector
<
T
>
,
typename
jit
::
EmbSeqPoolTuples
<
T
>::
attr_type
>
{
void
operator
()(
const
typename
jit
::
EmbSeqPoolTuples
<
T
>::
func_type
tgt
,
const
std
::
vector
<
T
>&
table
,
const
std
::
vector
<
int64_t
>&
idx
,
const
std
::
vector
<
T
>&
oref
,
const
typename
jit
::
EmbSeqPoolTuples
<
T
>::
attr_type
&
attr
)
{
EXPECT_TRUE
(
tgt
!=
nullptr
);
EXPECT_EQ
(
table
.
size
(),
static_cast
<
size_t
>
(
attr
.
table_height
*
attr
.
table_width
));
EXPECT_EQ
(
idx
.
size
(),
static_cast
<
size_t
>
(
attr
.
index_height
*
attr
.
index_width
));
EXPECT_EQ
(
oref
.
size
(),
static_cast
<
size_t
>
(
attr
.
table_width
*
attr
.
index_width
));
const
T
*
table_data
=
table
.
data
();
const
int64_t
*
idx_data
=
idx
.
data
();
const
T
*
oref_data
=
oref
.
data
();
int
o_w
=
oref
.
size
();
std
::
vector
<
T
>
out
(
o_w
);
T
*
o_data
=
out
.
data
();
tgt
(
table_data
,
idx_data
,
o_data
,
&
attr
);
ExpectEQ
<
T
>
(
o_data
,
oref_data
,
o_w
);
}
};
template
<
typename
T
>
struct
TestFuncWithRefer
<
jit
::
MatMulTuples
<
T
>
,
std
::
vector
<
T
>
,
std
::
vector
<
T
>
,
std
::
vector
<
T
>
,
...
...
@@ -644,6 +670,40 @@ void TestSoftmaxKernel() {
}
}
template
<
jit
::
KernelType
KT
,
typename
T
,
typename
PlaceType
>
void
TestEmbSeqPoolKernel
()
{
VLOG
(
10
)
<<
"===== Test JITKernel "
<<
jit
::
to_string
(
KT
);
int64_t
tbl_h
=
1e4
;
std
::
vector
<
jit
::
SeqPoolType
>
pool_types
=
{
jit
::
SeqPoolType
::
kSum
};
// only support sum yet
for
(
int
tbl_w
:
TestSizes
())
{
std
::
vector
<
T
>
table
(
tbl_h
*
tbl_w
);
RandomVec
<
T
>
(
tbl_h
*
tbl_w
,
table
.
data
(),
-
2.
f
,
2.
f
);
const
T
*
table_data
=
table
.
data
();
for
(
auto
type
:
pool_types
)
{
for
(
int
idx_w
:
{
1
,
2
,
10
,
16
})
{
for
(
int
idx_h
:
{
1
,
2
,
9
,
13
,
16
})
{
auto
ref
=
jit
::
GetRefer
<
KT
,
jit
::
EmbSeqPoolTuples
<
T
>>
();
EXPECT_TRUE
(
ref
!=
nullptr
);
std
::
vector
<
int64_t
>
idx
(
idx_h
*
idx_w
);
RandomVec
<
int64_t
>
(
idx_h
*
idx_w
,
idx
.
data
(),
0
,
tbl_h
-
1
);
int64_t
out_w
=
tbl_w
*
idx_w
;
std
::
vector
<
T
>
oref
(
out_w
);
const
int64_t
*
idx_data
=
idx
.
data
();
T
*
o_data
=
oref
.
data
();
jit
::
emb_seq_pool_attr_t
attr
(
tbl_h
,
tbl_w
,
idx_h
,
idx_w
,
out_w
,
type
);
ref
(
table_data
,
idx_data
,
o_data
,
&
attr
);
TestAllImpls
<
KT
,
jit
::
EmbSeqPoolTuples
<
T
>
,
PlaceType
,
std
::
vector
<
T
>
,
std
::
vector
<
int64_t
>
,
std
::
vector
<
T
>>
(
attr
,
table
,
idx
,
oref
,
attr
);
}
}
}
}
}
template
<
jit
::
KernelType
KT
,
typename
T
,
typename
PlaceType
>
void
TestNCHW16CMulNCKernel
()
{
VLOG
(
10
)
<<
"===== Test JITKernel "
<<
jit
::
to_string
(
KT
);
...
...
@@ -878,6 +938,11 @@ TEST(JITKernel, kSoftmax) {
TestSoftmaxKernel
<
jit
::
kSoftmax
,
double
,
CPUPlace
>
();
}
TEST
(
JITKernel
,
kEmbSeqPool
)
{
TestEmbSeqPoolKernel
<
jit
::
kEmbSeqPool
,
float
,
CPUPlace
>
();
TestEmbSeqPoolKernel
<
jit
::
kEmbSeqPool
,
double
,
CPUPlace
>
();
}
TEST
(
JITKernel
,
kNCHW16CMulNC
)
{
TestNCHW16CMulNCKernel
<
jit
::
kNCHW16CMulNC
,
float
,
CPUPlace
>
();
TestNCHW16CMulNCKernel
<
jit
::
kNCHW16CMulNC
,
double
,
CPUPlace
>
();
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录