Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleDetection
提交
59e5cc51
P
PaddleDetection
项目概览
PaddlePaddle
/
PaddleDetection
大约 1 年 前同步成功
通知
695
Star
11112
Fork
2696
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
184
列表
看板
标记
里程碑
合并请求
40
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
184
Issue
184
列表
看板
标记
里程碑
合并请求
40
合并请求
40
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
59e5cc51
编写于
1月 21, 2019
作者:
W
WangZhen
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Add quantization transform pass and UT.
上级
e2ff300b
变更
6
隐藏空白更改
内联
并排
Showing
6 changed file
with
157 addition
and
43 deletion
+157
-43
paddle/fluid/pybind/ir.cc
paddle/fluid/pybind/ir.cc
+2
-2
python/paddle/fluid/contrib/slim/graph/graph.py
python/paddle/fluid/contrib/slim/graph/graph.py
+16
-4
python/paddle/fluid/contrib/slim/quantization/__init__.py
python/paddle/fluid/contrib/slim/quantization/__init__.py
+3
-3
python/paddle/fluid/contrib/slim/quantization/quantization_pass.py
...ddle/fluid/contrib/slim/quantization/quantization_pass.py
+41
-19
python/paddle/fluid/contrib/slim/unitest/test_quantization_pass.py
...ddle/fluid/contrib/slim/unitest/test_quantization_pass.py
+55
-15
python/paddle/fluid/framework.py
python/paddle/fluid/framework.py
+40
-0
未找到文件。
paddle/fluid/pybind/ir.cc
浏览文件 @
59e5cc51
...
@@ -148,8 +148,8 @@ void BindNode(py::module *m) {
...
@@ -148,8 +148,8 @@ void BindNode(py::module *m) {
})
})
.
def
(
"outputs_append"
,
.
def
(
"outputs_append"
,
[](
Node
&
self
,
Node
&
node
)
{
self
.
outputs
.
push_back
(
&
node
);
})
[](
Node
&
self
,
Node
&
node
)
{
self
.
outputs
.
push_back
(
&
node
);
})
.
def_read
write
(
"inputs"
,
&
Node
::
inputs
)
.
def_read
only
(
"inputs"
,
&
Node
::
inputs
)
.
def_read
write
(
"outputs"
,
&
Node
::
outputs
);
.
def_read
only
(
"outputs"
,
&
Node
::
outputs
);
py
::
enum_
<
Node
::
Type
>
(
node
,
"Type"
)
py
::
enum_
<
Node
::
Type
>
(
node
,
"Type"
)
.
value
(
"Operation"
,
Node
::
Type
::
kOperation
)
.
value
(
"Operation"
,
Node
::
Type
::
kOperation
)
...
...
python/paddle/fluid/contrib/slim/graph/graph.py
浏览文件 @
59e5cc51
...
@@ -26,10 +26,20 @@ class PyGraph(object):
...
@@ -26,10 +26,20 @@ class PyGraph(object):
PyGraph uses core.Graph as the delegation to accomplish the manipulation.
PyGraph uses core.Graph as the delegation to accomplish the manipulation.
"""
"""
def
__init__
(
self
,
graph
):
def
__init__
(
self
,
graph
,
for_test
=
False
):
"""
Construct the PyGraph using core.Graph.
Args:
graph(core.Graph): C++ Graph.
for_test(bool): True for the test graph and false for the train graph.
"""
assert
isinstance
(
assert
isinstance
(
graph
,
core
.
Graph
),
'graph must be the instance of core.Graph.'
graph
,
core
.
Graph
),
'graph must be the instance of core.Graph.'
self
.
graph
=
graph
self
.
graph
=
graph
self
.
for_test
=
for_test
def
is_test
(
self
):
return
self
.
for_test
def
all_parameters
(
self
):
def
all_parameters
(
self
):
param_nodes
=
set
()
param_nodes
=
set
()
...
@@ -103,7 +113,7 @@ class PyGraph(object):
...
@@ -103,7 +113,7 @@ class PyGraph(object):
remove_nodes
=
set
(
remove_nodes
)
remove_nodes
=
set
(
remove_nodes
)
core
.
graph_safe_remove_nodes
(
self
.
graph
,
remove_nodes
)
core
.
graph_safe_remove_nodes
(
self
.
graph
,
remove_nodes
)
def
draw
_graph
(
self
,
save_path
,
name
,
marked_nodes
=
None
):
def
draw
(
self
,
save_path
,
name
,
marked_nodes
=
None
):
def
_convert_to_pdf
(
dot_file_path
):
def
_convert_to_pdf
(
dot_file_path
):
pdf_save_path
=
os
.
path
.
splitext
(
dot_file_path
)[
0
]
+
'.pdf'
pdf_save_path
=
os
.
path
.
splitext
(
dot_file_path
)[
0
]
+
'.pdf'
exited_code
=
subprocess
.
call
(
'dot -Tpdf '
+
dot_file_path
\
exited_code
=
subprocess
.
call
(
'dot -Tpdf '
+
dot_file_path
\
...
@@ -126,6 +136,8 @@ class PyGraph(object):
...
@@ -126,6 +136,8 @@ class PyGraph(object):
if
not
isinstance
(
marked_nodes
,
set
):
if
not
isinstance
(
marked_nodes
,
set
):
marked_nodes
=
set
(
marked_nodes
)
marked_nodes
=
set
(
marked_nodes
)
marked_nodes
=
marked_nodes
-
remove_ctr_vars
marked_nodes
=
marked_nodes
-
remove_ctr_vars
if
self
.
graph
.
has
(
'__graphviz__marked_node__'
):
self
.
graph
.
erase
(
'__graphviz__marked_node__'
)
self
.
graph
.
set
(
'__graphviz__marked_node__'
,
marked_nodes
)
self
.
graph
.
set
(
'__graphviz__marked_node__'
,
marked_nodes
)
viz_dot_path
=
os
.
path
.
join
(
save_path
,
name
)
+
'.dot'
viz_dot_path
=
os
.
path
.
join
(
save_path
,
name
)
+
'.dot'
viz_pass
=
core
.
get_pass
(
'graph_viz_pass'
)
viz_pass
=
core
.
get_pass
(
'graph_viz_pass'
)
...
@@ -137,8 +149,8 @@ class PyGraph(object):
...
@@ -137,8 +149,8 @@ class PyGraph(object):
convert_pass
=
core
.
get_pass
(
'graph_to_program_pass'
)
convert_pass
=
core
.
get_pass
(
'graph_to_program_pass'
)
convert_pass
.
set_program
(
'program'
,
Program
().
desc
)
convert_pass
.
set_program
(
'program'
,
Program
().
desc
)
convert_pass
.
apply
(
self
.
graph
)
convert_pass
.
apply
(
self
.
graph
)
program
=
Program
(
)
desc
=
convert_pass
.
get_program
(
'program'
)
program
.
desc
=
convert_pass
.
get_program
(
'program'
)
program
=
Program
.
construct_from_desc
(
desc
)
return
program
return
program
...
...
python/paddle/fluid/contrib/slim/quantization/__init__.py
浏览文件 @
59e5cc51
...
@@ -14,7 +14,7 @@
...
@@ -14,7 +14,7 @@
from
__future__
import
print_function
from
__future__
import
print_function
from
.
import
quantization_p
erformer
from
.
import
quantization_p
ass
from
.quantization_p
erformer
import
*
from
.quantization_p
ass
import
*
__all__
=
quantization_p
erformer
.
__all__
__all__
=
quantization_p
ass
.
__all__
python/paddle/fluid/contrib/slim/quantization/quantization_p
erformer
.py
→
python/paddle/fluid/contrib/slim/quantization/quantization_p
ass
.py
浏览文件 @
59e5cc51
...
@@ -15,22 +15,26 @@
...
@@ -15,22 +15,26 @@
import
collections
import
collections
import
numpy
as
np
import
numpy
as
np
from
....
import
core
from
....
import
core
from
....framework
import
Program
from
....framework
import
Variable
from
....initializer
import
Constant
from
....initializer
import
Constant
from
....
import
unique_name
from
....
import
unique_name
from
..graph
import
PyGraph
from
..graph
import
PyGraph
__all__
=
[
'Quantization
Performer
'
]
__all__
=
[
'Quantization
TransformPass
'
]
class
Quantization
Performer
(
object
):
class
Quantization
TransformPass
(
object
):
def
__init__
(
self
,
def
__init__
(
self
,
scope
=
None
,
program_exe
=
None
,
weight_bits
=
8
,
weight_bits
=
8
,
activation_bits
=
8
,
activation_bits
=
8
,
activation_quantize_type
=
'abs_max'
,
activation_quantize_type
=
'abs_max'
,
weight_quantize_type
=
'abs_max'
,
weight_quantize_type
=
'abs_max'
,
window_size
=
10000
):
window_size
=
10000
):
"""
"""
Convert and rewrite the
IR
Graph according to weight and
Convert and rewrite the
Py
Graph according to weight and
activation quantization type.
activation quantization type.
Args:
Args:
weight_bits (int): quantization bit number for weights,
weight_bits (int): quantization bit number for weights,
...
@@ -48,15 +52,21 @@ class QuantizationPerformer(object):
...
@@ -48,15 +52,21 @@ class QuantizationPerformer(object):
window_size (int): the window size for 'range_abs_max' quantization.
window_size (int): the window size for 'range_abs_max' quantization.
Examples:
Examples:
.. code-block:: python
.. code-block:: python
# the original graph will be rewrite, if you don't want to
# The original graph will be rewrite.
# change it, please clone at first.
import paddle.fluid as fluid
# graph = graph.clone()
from paddle.fluid.contrib.slim.quantization
\
from paddle.fluid.contrib.slim import *
import QuantizationTransformPass
from paddle.fluid.contrib.quantize import *
from paddle.fluid.contrib.slim.graph import PyGraph
graph = IRGraph(program)
from paddle.fluid import core
performer = QuantizationPerformer()
performer.quantize_transform(graph)
graph = PyGraph(core.Graph(program.desc), for_test=False)
exe = fluid.Executor(fluid.CPUPlace())
transform_pass = QuantizationTransformPass(fluid.global_scope(),
exe)
transform_pass.apply(graph)
"""
"""
self
.
scope
=
scope
self
.
program_exe
=
program_exe
self
.
weight_bits
=
weight_bits
self
.
weight_bits
=
weight_bits
self
.
activation_bits
=
activation_bits
self
.
activation_bits
=
activation_bits
...
@@ -74,7 +84,7 @@ class QuantizationPerformer(object):
...
@@ -74,7 +84,7 @@ class QuantizationPerformer(object):
self
.
weight_quantize_type
=
weight_quantize_type
self
.
weight_quantize_type
=
weight_quantize_type
self
.
window_size
=
window_size
self
.
window_size
=
window_size
self
.
need_init
ed_outer
=
collections
.
OrderedDict
()
self
.
need_init
ialized
=
collections
.
OrderedDict
()
self
.
quantizable_ops
=
[
'conv2d'
,
'depthwise_conv2d'
,
'mul'
]
self
.
quantizable_ops
=
[
'conv2d'
,
'depthwise_conv2d'
,
'mul'
]
self
.
quantizable_grad_ops
=
[
self
.
quantizable_grad_ops
=
[
'%s_grad'
%
(
op
)
for
op
in
self
.
quantizable_ops
'%s_grad'
%
(
op
)
for
op
in
self
.
quantizable_ops
...
@@ -86,11 +96,11 @@ class QuantizationPerformer(object):
...
@@ -86,11 +96,11 @@ class QuantizationPerformer(object):
self
.
is_test
=
None
self
.
is_test
=
None
self
.
global_step
=
None
self
.
global_step
=
None
def
quantize_transform
(
self
,
graph
,
is_test
):
def
apply
(
self
,
graph
):
self
.
need_inited_outer
.
clear
()
self
.
is_test
=
is_test
assert
isinstance
(
graph
,
assert
isinstance
(
graph
,
PyGraph
),
'graph must be the instance of PyGraph.'
PyGraph
),
'graph must be the instance of PyGraph.'
self
.
need_initialized
.
clear
()
self
.
is_test
=
graph
.
is_test
()
# marked the variable which has been dequantized.
# marked the variable which has been dequantized.
dequantized_vars
=
collections
.
OrderedDict
()
dequantized_vars
=
collections
.
OrderedDict
()
params
=
[
p
.
name
()
for
p
in
graph
.
all_parameters
()]
params
=
[
p
.
name
()
for
p
in
graph
.
all_parameters
()]
...
@@ -138,7 +148,19 @@ class QuantizationPerformer(object):
...
@@ -138,7 +148,19 @@ class QuantizationPerformer(object):
if
op
.
name
()
in
self
.
quantizable_grad_ops
:
if
op
.
name
()
in
self
.
quantizable_grad_ops
:
_transform_backward
(
graph
,
op
)
_transform_backward
(
graph
,
op
)
return
self
.
need_inited_outer
if
len
(
self
.
need_initialized
)
>
0
:
assert
self
.
scope
is
not
None
,
\
'The scope cannot be set None when activation_quantize_type equals to range_abs_max.'
assert
self
.
program_exe
is
not
None
,
\
'The program_exe cannot be set None when activation_quantize_type equals to range_abs_max.'
init_program
=
Program
()
for
var_desc
,
initializer
in
self
.
need_initialized
.
iteritems
():
var
=
Variable
.
construct_from_desc
(
init_program
.
global_block
(),
var_desc
)
initializer
(
var
,
init_program
.
global_block
())
self
.
program_exe
.
run
(
program
=
init_program
,
scope
=
self
.
scope
)
return
graph
def
_create_global_step
(
self
,
graph
):
def
_create_global_step
(
self
,
graph
):
if
self
.
weight_quantize_type
==
'range_abs_max'
or
\
if
self
.
weight_quantize_type
==
'range_abs_max'
or
\
...
@@ -153,7 +175,7 @@ class QuantizationPerformer(object):
...
@@ -153,7 +175,7 @@ class QuantizationPerformer(object):
var_type
=
core
.
VarDesc
.
VarType
.
LOD_TENSOR
,
var_type
=
core
.
VarDesc
.
VarType
.
LOD_TENSOR
,
shape
=
[
1
],
shape
=
[
1
],
var_dtype
=
core
.
VarDesc
.
VarType
.
INT64
)
var_dtype
=
core
.
VarDesc
.
VarType
.
INT64
)
self
.
need_init
ed_outer
[
global_step_in
.
var
()]
=
\
self
.
need_init
ialized
[
global_step_in
.
var
()]
=
\
Constant
(
value
=
0
,
force_cpu
=
True
)
Constant
(
value
=
0
,
force_cpu
=
True
)
global_step_out
=
graph
.
create_var_node_from_desc
(
global_step_out
=
graph
.
create_var_node_from_desc
(
global_step_in
.
var
())
global_step_in
.
var
())
...
@@ -220,7 +242,7 @@ class QuantizationPerformer(object):
...
@@ -220,7 +242,7 @@ class QuantizationPerformer(object):
var_type
=
core
.
VarDesc
.
VarType
.
LOD_TENSOR
,
var_type
=
core
.
VarDesc
.
VarType
.
LOD_TENSOR
,
shape
=
[
1
],
shape
=
[
1
],
var_dtype
=
var_node
.
var
().
dtype
())
var_dtype
=
var_node
.
var
().
dtype
())
self
.
need_init
ed_outer
[
scale_in_node
.
var
()]
=
Constant
(
value
=
0.001
)
self
.
need_init
ialized
[
scale_in_node
.
var
()]
=
Constant
(
value
=
0.001
)
scale_out_node
=
graph
.
create_var_node_from_desc
(
scale_in_node
.
var
())
scale_out_node
=
graph
.
create_var_node_from_desc
(
scale_in_node
.
var
())
inputs
=
{
'X'
:
var_node
,
'InScale'
:
scale_in_node
}
inputs
=
{
'X'
:
var_node
,
'InScale'
:
scale_in_node
}
...
@@ -233,7 +255,7 @@ class QuantizationPerformer(object):
...
@@ -233,7 +255,7 @@ class QuantizationPerformer(object):
var_type
=
core
.
VarDesc
.
VarType
.
LOD_TENSOR
,
var_type
=
core
.
VarDesc
.
VarType
.
LOD_TENSOR
,
shape
=
[
self
.
window_size
],
shape
=
[
self
.
window_size
],
var_dtype
=
var_node
.
var
().
dtype
())
var_dtype
=
var_node
.
var
().
dtype
())
self
.
need_init
ed_outer
[
scales_node
.
var
()]
=
Constant
(
value
=
0
)
self
.
need_init
ialized
[
scales_node
.
var
()]
=
Constant
(
value
=
0
)
inputs
[
'Iter'
]
=
self
.
global_step
inputs
[
'Iter'
]
=
self
.
global_step
outputs
[
'OutScales'
]
=
scales_node
outputs
[
'OutScales'
]
=
scales_node
attrs
=
{
attrs
=
{
...
...
python/paddle/fluid/contrib/slim/unitest/test_quantization_p
erformer
.py
→
python/paddle/fluid/contrib/slim/unitest/test_quantization_p
ass
.py
浏览文件 @
59e5cc51
...
@@ -15,11 +15,10 @@
...
@@ -15,11 +15,10 @@
import
unittest
import
unittest
import
random
import
random
import
numpy
as
np
import
numpy
as
np
import
paddle
import
paddle.fluid
as
fluid
import
paddle.fluid
as
fluid
import
six
import
six
from
paddle.fluid.framework
import
Program
from
paddle.fluid.framework
import
Program
from
paddle.fluid.contrib.slim.quantization
import
Quantization
Performer
from
paddle.fluid.contrib.slim.quantization
import
Quantization
TransformPass
from
paddle.fluid.contrib.slim.graph
import
PyGraph
from
paddle.fluid.contrib.slim.graph
import
PyGraph
from
paddle.fluid
import
core
from
paddle.fluid
import
core
...
@@ -66,22 +65,39 @@ def residual_block(num):
...
@@ -66,22 +65,39 @@ def residual_block(num):
return
loss
return
loss
class
TestQuantization
Performer
(
unittest
.
TestCase
):
class
TestQuantization
TransformPass
(
unittest
.
TestCase
):
def
setUp
(
self
):
def
setUp
(
self
):
# since quant_op and dequant_op is not ready, use cos and sin for test
self
.
weight_quant_op_type
=
'fake_quantize_abs_max'
self
.
dequant_op_type
=
'fake_dequantize_max_abs'
self
.
quantizable_op_and_inputs
=
{
self
.
quantizable_op_and_inputs
=
{
'conv2d'
:
[
'Input'
,
'Filter'
],
'conv2d'
:
[
'Input'
,
'Filter'
],
'depthwise_conv2d'
:
[
'Input'
,
'Filter'
],
'depthwise_conv2d'
:
[
'Input'
,
'Filter'
],
'mul'
:
[
'X'
,
'Y'
]
'mul'
:
[
'X'
,
'Y'
]
}
}
self
.
quantizable_
op_grad_and
_inputs
=
{
self
.
quantizable_
grad_op
_inputs
=
{
'conv2d_grad'
:
[
'Input'
,
'Filter'
],
'conv2d_grad'
:
[
'Input'
,
'Filter'
],
'depthwise_conv2d_grad'
:
[
'Input'
,
'Filter'
],
'depthwise_conv2d_grad'
:
[
'Input'
,
'Filter'
],
'mul_grad'
:
[
'X'
,
'Y'
]
'mul_grad'
:
[
'X'
,
'Y'
]
}
}
def
check_program
(
self
,
transform_pass
,
program
):
quantized_ops
=
set
()
for
block
in
program
.
blocks
:
for
op
in
block
.
ops
:
# check forward
if
op
.
type
in
self
.
quantizable_op_and_inputs
:
for
arg_name
in
op
.
input_arg_names
:
self
.
assertTrue
(
arg_name
.
endswith
(
'.quantized.dequantized'
))
quantized_ops
.
add
(
arg_name
)
for
op
in
block
.
ops
:
# check backward
if
op
.
type
in
self
.
quantizable_grad_op_inputs
:
for
pname
in
self
.
quantizable_grad_op_inputs
[
op
.
type
]:
arg_name
=
op
.
input
(
pname
)[
0
]
self
.
assertTrue
(
arg_name
.
endswith
(
'.quantized.dequantized'
))
self
.
assertTrue
(
arg_name
in
quantized_ops
)
def
linear_fc_quant
(
self
,
quant_type
):
def
linear_fc_quant
(
self
,
quant_type
):
main
=
fluid
.
Program
()
main
=
fluid
.
Program
()
startup
=
fluid
.
Program
()
startup
=
fluid
.
Program
()
...
@@ -89,14 +105,26 @@ class TestQuantizationPerformer(unittest.TestCase):
...
@@ -89,14 +105,26 @@ class TestQuantizationPerformer(unittest.TestCase):
loss
=
linear_fc
(
3
)
loss
=
linear_fc
(
3
)
opt
=
fluid
.
optimizer
.
Adam
(
learning_rate
=
0.001
)
opt
=
fluid
.
optimizer
.
Adam
(
learning_rate
=
0.001
)
opt
.
minimize
(
loss
)
opt
.
minimize
(
loss
)
graph
=
PyGraph
(
core
.
Graph
(
main
.
desc
))
exe
=
fluid
.
Executor
(
fluid
.
CPUPlace
())
performer
=
QuantizationPerformer
(
activation_quantize_type
=
quant_type
)
graph
=
PyGraph
(
core
.
Graph
(
main
.
desc
),
for_test
=
False
)
performer
.
quantize_transform
(
graph
,
False
)
transform_pass
=
QuantizationTransformPass
(
scope
=
fluid
.
global_scope
(),
program_exe
=
exe
,
activation_quantize_type
=
quant_type
)
transform_pass
.
apply
(
graph
)
marked_nodes
=
set
()
marked_nodes
=
set
()
for
op
in
graph
.
all_ops
():
for
op
in
graph
.
all_ops
():
if
op
.
name
().
find
(
'quantize'
)
>
-
1
:
if
op
.
name
().
find
(
'quantize'
)
>
-
1
:
marked_nodes
.
add
(
op
)
marked_nodes
.
add
(
op
)
graph
.
draw_graph
(
'.'
,
'quantize_fc_'
+
quant_type
,
marked_nodes
)
graph
.
draw
(
'.'
,
'quantize_fc_'
+
quant_type
,
marked_nodes
)
program
=
graph
.
to_program
()
self
.
check_program
(
transform_pass
,
program
)
val_graph
=
PyGraph
(
core
.
Graph
(
program
.
desc
),
for_test
=
False
)
val_marked_nodes
=
set
()
for
op
in
val_graph
.
all_ops
():
if
op
.
name
().
find
(
'quantize'
)
>
-
1
:
val_marked_nodes
.
add
(
op
)
val_graph
.
draw
(
'.'
,
'val_fc_'
+
quant_type
,
val_marked_nodes
)
def
test_linear_fc_quant_abs_max
(
self
):
def
test_linear_fc_quant_abs_max
(
self
):
self
.
act_quant_op_type
=
'fake_quantize_abs_max'
self
.
act_quant_op_type
=
'fake_quantize_abs_max'
...
@@ -113,14 +141,26 @@ class TestQuantizationPerformer(unittest.TestCase):
...
@@ -113,14 +141,26 @@ class TestQuantizationPerformer(unittest.TestCase):
loss
=
residual_block
(
2
)
loss
=
residual_block
(
2
)
opt
=
fluid
.
optimizer
.
Adam
(
learning_rate
=
0.001
)
opt
=
fluid
.
optimizer
.
Adam
(
learning_rate
=
0.001
)
opt
.
minimize
(
loss
)
opt
.
minimize
(
loss
)
graph
=
PyGraph
(
core
.
Graph
(
main
.
desc
))
exe
=
fluid
.
Executor
(
fluid
.
CPUPlace
())
performer
=
QuantizationPerformer
(
activation_quantize_type
=
quant_type
)
graph
=
PyGraph
(
core
.
Graph
(
main
.
desc
),
for_test
=
False
)
performer
.
quantize_transform
(
graph
,
False
)
transform_pass
=
QuantizationTransformPass
(
scope
=
fluid
.
global_scope
(),
program_exe
=
exe
,
activation_quantize_type
=
quant_type
)
transform_pass
.
apply
(
graph
)
marked_nodes
=
set
()
marked_nodes
=
set
()
for
op
in
graph
.
all_ops
():
for
op
in
graph
.
all_ops
():
if
op
.
name
().
find
(
'quantize'
)
>
-
1
:
if
op
.
name
().
find
(
'quantize'
)
>
-
1
:
marked_nodes
.
add
(
op
)
marked_nodes
.
add
(
op
)
graph
.
draw_graph
(
'.'
,
'quantize_residual_'
+
quant_type
,
marked_nodes
)
graph
.
draw
(
'.'
,
'quantize_residual_'
+
quant_type
,
marked_nodes
)
program
=
graph
.
to_program
()
self
.
check_program
(
transform_pass
,
program
)
val_graph
=
PyGraph
(
core
.
Graph
(
program
.
desc
),
for_test
=
False
)
val_marked_nodes
=
set
()
for
op
in
val_graph
.
all_ops
():
if
op
.
name
().
find
(
'quantize'
)
>
-
1
:
val_marked_nodes
.
add
(
op
)
val_graph
.
draw
(
'.'
,
'val_residual_'
+
quant_type
,
val_marked_nodes
)
def
test_residual_block_abs_max
(
self
):
def
test_residual_block_abs_max
(
self
):
self
.
act_quant_op_type
=
'fake_quantize_abs_max'
self
.
act_quant_op_type
=
'fake_quantize_abs_max'
...
...
python/paddle/fluid/framework.py
浏览文件 @
59e5cc51
...
@@ -378,6 +378,27 @@ class Variable(object):
...
@@ -378,6 +378,27 @@ class Variable(object):
self
.
_ivar
.
desc
=
self
.
desc
self
.
_ivar
.
desc
=
self
.
desc
self
.
_ivar
.
stop_gradient
=
stop_gradient
self
.
_ivar
.
stop_gradient
=
stop_gradient
@
staticmethod
def
construct_from_desc
(
block
,
desc
):
"""
Construct a Variable from variable desc.
Args:
desc(core.VarDesc): The variable desc for constructing.
Returns:
Variable: A variable.
"""
v
=
Variable
(
block
=
block
,
type
=
desc
.
type
(),
name
=
desc
.
name
(),
shape
=
desc
.
shape
(),
dtype
=
desc
.
dtype
(),
lod_level
=
desc
.
lod_level
(),
persistable
=
desc
.
persistable
())
v
.
desc
=
desc
return
v
def
_numpy
(
self
):
def
_numpy
(
self
):
tensor
=
self
.
_ivar
.
value
().
get_tensor
()
tensor
=
self
.
_ivar
.
value
().
get_tensor
()
return
np
.
array
(
tensor
)
return
np
.
array
(
tensor
)
...
@@ -1925,6 +1946,25 @@ class Program(object):
...
@@ -1925,6 +1946,25 @@ class Program(object):
p
.
_sync_with_cpp
()
p
.
_sync_with_cpp
()
return
p
return
p
@
staticmethod
def
construct_from_desc
(
desc
):
"""
Construct a program from program desc.
Notes: All information about parameters will be lost.
Args:
desc(core.ProgramDesc): The program desc for constructing.
Returns:
Program: A program.
"""
p
=
Program
()
p
.
desc
=
desc
p
.
blocks
=
[
Block
(
p
,
i
)
for
i
in
six
.
moves
.
range
(
p
.
desc
.
num_blocks
())]
p
.
_sync_with_cpp
()
return
p
@
property
@
property
def
random_seed
(
self
):
def
random_seed
(
self
):
"""
"""
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录