未验证 提交 59729902 编写于 作者: T Tao Luo 提交者: GitHub

Merge pull request #11523 from mozga-intel/mozga-intel/Gausian_random_mkldnn_layout

MKLDNN layout: Gaussian random layout
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include <string>
#include "paddle/fluid/operators/mean_op.h"
namespace paddle {
namespace operators {
using framework::DataLayout;
template <typename T>
class GaussianMKLDNNKernel : public paddle::framework::OpKernel<T> {
public:
void Compute(const framework::ExecutionContext& context) const override {
float mean = context.Attr<float>("mean");
float std = context.Attr<float>("std");
auto* tensor = context.Output<framework::Tensor>("Out");
T* data = tensor->mutable_data<T>(context.GetPlace());
unsigned int seed = static_cast<unsigned int>(context.Attr<int>("seed"));
std::minstd_rand engine;
if (seed == 0) {
seed = std::random_device()();
}
engine.seed(seed);
std::normal_distribution<T> dist(mean, std);
int64_t size = tensor->numel();
for (int64_t i = 0; i < size; ++i) {
data[i] = dist(engine);
}
// The format of output is set as the mkldnn's format
// TODO(@mozga-intel) The format of matrix sets inside the another layers.
tensor->set_layout(DataLayout::kMKLDNN);
tensor->set_format(mkldnn::memory::format::oihw);
}
};
} // namespace operators
} // namespace paddle
namespace ops = paddle::operators;
REGISTER_OP_KERNEL(gaussian_random, MKLDNN, ::paddle::platform::CPUPlace,
ops::GaussianMKLDNNKernel<float>);
...@@ -15,6 +15,10 @@ limitations under the License. */ ...@@ -15,6 +15,10 @@ limitations under the License. */
#include <random> #include <random>
#include "paddle/fluid/framework/op_registry.h" #include "paddle/fluid/framework/op_registry.h"
#ifdef PADDLE_WITH_MKLDNN
#include "paddle/fluid/platform/mkldnn_helper.h"
#endif
namespace paddle { namespace paddle {
namespace operators { namespace operators {
...@@ -62,9 +66,20 @@ class GaussianRandomOp : public framework::OperatorWithKernel { ...@@ -62,9 +66,20 @@ class GaussianRandomOp : public framework::OperatorWithKernel {
protected: protected:
framework::OpKernelType GetExpectedKernelType( framework::OpKernelType GetExpectedKernelType(
const framework::ExecutionContext& ctx) const override { const framework::ExecutionContext& ctx) const override {
framework::LibraryType library{framework::LibraryType::kPlain};
framework::DataLayout layout{framework::DataLayout::kAnyLayout};
#ifdef PADDLE_WITH_MKLDNN
if (library == framework::LibraryType::kPlain &&
platform::CanMKLDNNBeUsed(ctx)) {
library = framework::LibraryType::kMKLDNN;
layout = framework::DataLayout::kMKLDNN;
}
#endif
return framework::OpKernelType( return framework::OpKernelType(
static_cast<framework::proto::VarType::Type>(ctx.Attr<int>("dtype")), static_cast<framework::proto::VarType::Type>(ctx.Attr<int>("dtype")),
ctx.device_context()); ctx.device_context(), layout, library);
} }
}; };
...@@ -95,7 +110,9 @@ class GaussianRandomOpMaker : public framework::OpProtoAndCheckerMaker { ...@@ -95,7 +110,9 @@ class GaussianRandomOpMaker : public framework::OpProtoAndCheckerMaker {
"(int, default 5(FP32)) " "(int, default 5(FP32)) "
"Output data type.") "Output data type.")
.SetDefault(framework::proto::VarType::FP32); .SetDefault(framework::proto::VarType::FP32);
AddAttr<bool>("use_mkldnn",
"(bool, default false) Only used in mkldnn kernel")
.SetDefault(false);
AddComment(R"DOC( AddComment(R"DOC(
GaussianRandom Operator. GaussianRandom Operator.
......
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import unittest
from test_gaussian_random_op import TestGaussianRandomOp
class TestMKLDNN(TestGaussianRandomOp):
def init_kernel_type(self):
self.use_mkldnn = True
if __name__ == '__main__':
unittest.main()
...@@ -25,7 +25,15 @@ class TestGaussianRandomOp(unittest.TestCase): ...@@ -25,7 +25,15 @@ class TestGaussianRandomOp(unittest.TestCase):
def setUp(self): def setUp(self):
self.op_type = "gaussian_random" self.op_type = "gaussian_random"
self.inputs = {} self.inputs = {}
self.attrs = {"shape": [1000, 784], "mean": .0, "std": 1., "seed": 10} self.use_mkldnn = False
self.init_kernel_type()
self.attrs = {
"shape": [1000, 784],
"mean": .0,
"std": 1.,
"seed": 10,
"use_mkldnn": self.use_mkldnn
}
self.outputs = ["Out"] self.outputs = ["Out"]
...@@ -58,6 +66,9 @@ class TestGaussianRandomOp(unittest.TestCase): ...@@ -58,6 +66,9 @@ class TestGaussianRandomOp(unittest.TestCase):
self.assertAlmostEqual(numpy.mean(tensor), .0, delta=0.1) self.assertAlmostEqual(numpy.mean(tensor), .0, delta=0.1)
self.assertAlmostEqual(numpy.std(tensor), 1., delta=0.1) self.assertAlmostEqual(numpy.std(tensor), 1., delta=0.1)
def init_kernel_type(self):
pass
if __name__ == "__main__": if __name__ == "__main__":
unittest.main() unittest.main()
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册