Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleDetection
提交
5939a17c
P
PaddleDetection
项目概览
PaddlePaddle
/
PaddleDetection
大约 1 年 前同步成功
通知
695
Star
11112
Fork
2696
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
184
列表
看板
标记
里程碑
合并请求
40
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
184
Issue
184
列表
看板
标记
里程碑
合并请求
40
合并请求
40
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
5939a17c
编写于
10月 24, 2017
作者:
Y
yangyaming
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Follow comments and adapt to new interface.
上级
05211610
变更
3
隐藏空白更改
内联
并排
Showing
3 changed file
with
47 addition
and
43 deletion
+47
-43
paddle/operators/huber_loss_op.cc
paddle/operators/huber_loss_op.cc
+36
-31
paddle/operators/huber_loss_op.h
paddle/operators/huber_loss_op.h
+8
-9
python/paddle/v2/framework/tests/test_huber_loss_op.py
python/paddle/v2/framework/tests/test_huber_loss_op.py
+3
-3
未找到文件。
paddle/operators/huber_loss_op.cc
浏览文件 @
5939a17c
...
...
@@ -21,24 +21,24 @@ class HuberLossOp : public framework::OperatorWithKernel {
public:
using
framework
::
OperatorWithKernel
::
OperatorWithKernel
;
protected:
void
InferShape
(
const
framework
::
InferShapeContext
&
ctx
)
const
override
{
PADDLE_ENFORCE_NOT_NULL
(
ctx
.
InputVar
(
"X"
),
"Input(X) must be initialized."
);
PADDLE_ENFORCE_NOT_NULL
(
ctx
.
InputVar
(
"Y"
),
"Input(Y) must be initialized."
);
void
InferShape
(
framework
::
InferShapeContext
*
ctx
)
const
override
{
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"X"
),
"Input(X) must be initialized."
);
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"Y"
),
"Input(Y) must be initialized."
);
auto
*
x
=
ctx
.
Input
<
Tensor
>
(
"X"
);
auto
*
y
=
ctx
.
Input
<
Tensor
>
(
"Y"
);
auto
x_dims
=
ctx
->
GetInputDim
(
"X"
);
auto
y_dims
=
ctx
->
GetInputDim
(
"Y"
);
PADDLE_ENFORCE_EQ
(
x
->
dims
(),
y
->
dims
()
);
PADDLE_ENFORCE_EQ
(
framework
::
arity
(
x
->
dims
()
),
2
,
PADDLE_ENFORCE_EQ
(
x
_dims
,
y_dims
);
PADDLE_ENFORCE_EQ
(
x_dims
.
size
(
),
2
,
"The rank of Input(X) must be 2 and the shape is "
"[batch_size, 1]."
);
PADDLE_ENFORCE_EQ
(
x
->
dims
()
[
1
],
1
,
PADDLE_ENFORCE_EQ
(
x
_dims
[
1
],
1
,
"Each row of Input(X) contains a real value, "
"so the 2nd dimension of Input(X) must be 1."
);
ctx
.
Output
<
Tensor
>
(
"Residual"
)
->
Resize
(
x
->
dims
());
ctx
.
Output
<
Tensor
>
(
"Out"
)
->
Resize
({
x
->
dims
()[
0
],
1
});
ctx
->
SetOutputDim
(
"Residual"
,
x_dims
);
ctx
->
SetOutputDim
(
"Out"
,
{
x_dims
[
0
],
1
});
ctx
->
ShareLoD
(
"X"
,
"Out"
);
}
};
...
...
@@ -55,7 +55,7 @@ class HuberLossOpMaker : public framework::OpProtoAndCheckerMaker {
"The target value of huber loss op."
"Y is a 2-D tensor with shape [batch_size, 1]."
);
AddOutput
(
"Residual"
,
"Intermediate tensor to cache residual value
of
Y and X."
"Intermediate tensor to cache residual value
between
Y and X."
"The shape is same as Input(X) and will be reused in backward."
)
.
AsIntermediate
();
AddOutput
(
"Out"
,
...
...
@@ -82,25 +82,30 @@ class HuberLossGradOp : public framework::OperatorWithKernel {
public:
using
framework
::
OperatorWithKernel
::
OperatorWithKernel
;
protected:
void
InferShape
(
const
framework
::
InferShapeContext
&
ctx
)
const
override
{
auto
*
x
=
ctx
.
Input
<
Tensor
>
(
"X"
);
auto
*
y
=
ctx
.
Input
<
Tensor
>
(
"Y"
);
auto
*
residual
=
ctx
.
Input
<
Tensor
>
(
"Residual"
);
auto
*
out_grad
=
ctx
.
Input
<
Tensor
>
(
framework
::
GradVarName
(
"Out"
));
auto
*
x_grad
=
ctx
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"X"
));
auto
*
y_grad
=
ctx
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"Y"
));
PADDLE_ENFORCE_NOT_NULL
(
x
,
"Input(X) should not be null."
);
PADDLE_ENFORCE_NOT_NULL
(
y
,
"Input(Y) should not be null."
);
PADDLE_ENFORCE_NOT_NULL
(
residual
,
"Input(Residual) should not be null."
);
PADDLE_ENFORCE_NOT_NULL
(
out_grad
,
"Input(Out@GRAD) should not be null."
);
PADDLE_ENFORCE_EQ
(
residual
->
dims
(),
x
->
dims
());
PADDLE_ENFORCE_EQ
(
out_grad
->
dims
(),
x
->
dims
());
if
(
x_grad
)
x_grad
->
Resize
(
x
->
dims
());
if
(
y_grad
)
y_grad
->
Resize
(
y
->
dims
());
void
InferShape
(
framework
::
InferShapeContext
*
ctx
)
const
override
{
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"X"
),
"Input(X) should not be null."
);
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"Y"
),
"Input(Y) should not be null."
);
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"Residual"
),
"Input(Residual) should not be null."
);
PADDLE_ENFORCE
(
ctx
->
HasInput
(
framework
::
GradVarName
(
"Out"
)),
"Input(Out@GRAD) should not be null."
);
auto
x_dims
=
ctx
->
GetInputDim
(
"X"
);
auto
y_dims
=
ctx
->
GetInputDim
(
"Y"
);
auto
residual_dims
=
ctx
->
GetInputDim
(
"Residual"
);
auto
out_grad_dims
=
ctx
->
GetInputDim
(
framework
::
GradVarName
(
"Out"
));
PADDLE_ENFORCE_EQ
(
residual_dims
,
x_dims
);
PADDLE_ENFORCE_EQ
(
out_grad_dims
,
x_dims
);
auto
x_grad_name
=
framework
::
GradVarName
(
"X"
);
auto
y_grad_name
=
framework
::
GradVarName
(
"Y"
);
if
(
ctx
->
HasOutput
(
x_grad_name
))
{
ctx
->
SetOutputDim
(
x_grad_name
,
x_dims
);
}
if
(
ctx
->
HasOutput
(
y_grad_name
))
{
ctx
->
SetOutputDim
(
y_grad_name
,
y_dims
);
}
}
};
...
...
paddle/operators/huber_loss_op.h
浏览文件 @
5939a17c
...
...
@@ -42,14 +42,14 @@ struct HuberLossForward {
};
template
<
typename
Place
,
typename
T
,
typename
AttrType
=
T
>
class
HuberLossKernel
:
public
framework
::
OpKernel
{
class
HuberLossKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
context
)
const
override
{
auto
*
in0
=
context
.
Input
<
Tensor
>
(
"X"
);
auto
*
in1
=
context
.
Input
<
Tensor
>
(
"Y"
);
auto
*
out0
=
context
.
Output
<
Tensor
>
(
"Residual"
);
auto
*
out1
=
context
.
Output
<
Tensor
>
(
"Out"
);
auto
delta
=
static_cast
<
T
>
(
context
.
op
().
Attr
<
AttrType
>
(
"delta"
));
auto
delta
=
static_cast
<
T
>
(
context
.
Attr
<
AttrType
>
(
"delta"
));
auto
place
=
context
.
GetEigenDevice
<
Place
>
();
auto
x
=
EigenVector
<
T
>::
Flatten
(
*
in0
);
...
...
@@ -65,11 +65,10 @@ class HuberLossKernel : public framework::OpKernel {
template
<
typename
T
>
struct
HuberLossBackward
{
HOSTDEVICE
HuberLossBackward
(
const
T
&
delta
,
bool
is_x
)
:
is_x
(
is_x
),
delta
(
delta
)
{}
HOSTDEVICE
HuberLossBackward
(
const
T
&
delta
,
T
sign
)
:
sign
(
sign
),
delta
(
delta
)
{}
HOSTDEVICE
T
operator
()(
const
T
&
val
)
const
{
T
sign
=
is_x
?
-
1.0
:
1.0
;
T
abs_val
=
std
::
abs
(
val
);
if
(
abs_val
<=
delta
)
{
return
sign
*
val
;
...
...
@@ -82,12 +81,12 @@ struct HuberLossBackward {
}
}
bool
is_x
;
T
sign
;
T
delta
;
};
template
<
typename
Place
,
typename
T
,
typename
AttrType
=
T
>
class
HuberLossGradKernel
:
public
framework
::
OpKernel
{
class
HuberLossGradKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
context
)
const
override
{
auto
*
in0
=
context
.
Input
<
Tensor
>
(
"Residual"
);
...
...
@@ -104,14 +103,14 @@ class HuberLossGradKernel : public framework::OpKernel {
out0
->
mutable_data
<
T
>
(
context
.
GetPlace
());
auto
x_grad
=
EigenVector
<
T
>::
Flatten
(
*
out0
);
x_grad
.
device
(
place
)
=
out_grad
*
residual
.
unaryExpr
(
HuberLossBackward
<
T
>
(
delta
,
true
));
out_grad
*
residual
.
unaryExpr
(
HuberLossBackward
<
T
>
(
delta
,
-
1.0
));
}
if
(
out1
)
{
out1
->
mutable_data
<
T
>
(
context
.
GetPlace
());
auto
y_grad
=
EigenVector
<
T
>::
Flatten
(
*
out1
);
y_grad
.
device
(
place
)
=
out_grad
*
residual
.
unaryExpr
(
HuberLossBackward
<
T
>
(
delta
,
false
));
out_grad
*
residual
.
unaryExpr
(
HuberLossBackward
<
T
>
(
delta
,
1.0
));
}
}
};
...
...
python/paddle/v2/framework/tests/test_huber_loss_op.py
浏览文件 @
5939a17c
...
...
@@ -32,15 +32,15 @@ class TestHuberLossOp(OpTest):
self
.
check_output
()
def
test_check_grad_normal
(
self
):
self
.
check_grad
([
'X'
,
'Y'
],
'Out'
,
max_relative_error
=
0.0
5
)
self
.
check_grad
([
'X'
,
'Y'
],
'Out'
,
max_relative_error
=
0.0
08
)
def
test_check_grad_ingore_x
(
self
):
self
.
check_grad
(
[
'Y'
],
'Out'
,
max_relative_error
=
0.
5
,
no_grad_set
=
set
(
"residual"
))
[
'Y'
],
'Out'
,
max_relative_error
=
0.
008
,
no_grad_set
=
set
(
"residual"
))
def
test_check_grad_ingore_y
(
self
):
self
.
check_grad
(
[
'X'
],
'Out'
,
max_relative_error
=
0.
5
,
no_grad_set
=
set
(
'residual'
))
[
'X'
],
'Out'
,
max_relative_error
=
0.
008
,
no_grad_set
=
set
(
'residual'
))
if
__name__
==
'__main__'
:
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录