Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleDetection
提交
584c9cfc
P
PaddleDetection
项目概览
PaddlePaddle
/
PaddleDetection
大约 1 年 前同步成功
通知
694
Star
11112
Fork
2696
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
184
列表
看板
标记
里程碑
合并请求
40
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
184
Issue
184
列表
看板
标记
里程碑
合并请求
40
合并请求
40
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
体验新版 GitCode,发现更多精彩内容 >>
未验证
提交
584c9cfc
编写于
12月 07, 2017
作者:
Y
Yu Yang
提交者:
GitHub
12月 07, 2017
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Add comments of unique_name, Variable, Operator (#6342)
上级
b0f83eda
变更
1
隐藏空白更改
内联
并排
Showing
1 changed file
with
216 addition
and
15 deletion
+216
-15
python/paddle/v2/fluid/framework.py
python/paddle/v2/fluid/framework.py
+216
-15
未找到文件。
python/paddle/v2/fluid/framework.py
浏览文件 @
584c9cfc
...
...
@@ -3,6 +3,7 @@ import collections
import
numpy
as
np
from
.
import
core
import
proto.framework_pb2
as
framework_pb2
import
google.protobuf.message
import
contextlib
__all__
=
[
...
...
@@ -13,11 +14,28 @@ __all__ = [
def
unique_name
(
prefix
):
"""
Generate unique names with prefix
Args:
prefix(str): The prefix of return string
Returns(str): A unique string with the prefix
"""
uid
=
core
.
unique_integer
(
prefix
)
# unique during whole process.
return
"_"
.
join
([
prefix
,
str
(
uid
)])
def
convert_np_dtype_to_dtype_
(
np_dtype
):
"""
Convert the data type in numpy to the data type in Paddle
Args:
np_dtype(np.dtype): the data type in numpy
Returns(core.DataType): the data type in Paddle
"""
dtype
=
np
.
dtype
(
np_dtype
)
if
dtype
==
np
.
float32
:
return
core
.
DataType
.
FP32
...
...
@@ -38,17 +56,33 @@ def convert_np_dtype_to_dtype_(np_dtype):
def
dtype_is_floating
(
dtype
):
"""
Check the data type is floating or not.
Args:
dtype(np.dtype|core.DataType): data type.
Could be numpy format or Paddle format
Returns(bool): True if data type is a float value
"""
if
not
isinstance
(
dtype
,
core
.
DataType
):
dtype
=
convert_np_dtype_to_dtype_
(
dtype
)
if
(
dtype
==
core
.
DataType
.
FP16
or
dtype
==
core
.
DataType
.
FP32
or
dtype
==
core
.
DataType
.
FP64
):
return
True
else
:
return
False
return
dtype
in
[
core
.
DataType
.
FP16
,
core
.
DataType
.
FP32
,
core
.
DataType
.
FP64
]
def
_debug_string_
(
proto
,
throw_on_error
=
True
):
"""
Get the debug string of a protobuf message. The message could be not
initialized.
Args:
proto(google.protobuf.message.Message): The protobuf message
throw_on_error(bool): True if raise an error when the protobuf message
is not initialized.
Returns(str): The debug string of the protobuf message
"""
error_fields
=
list
()
if
not
proto
.
IsInitialized
(
error_fields
)
and
throw_on_error
:
raise
ValueError
(
"{0} are not initialized
\n
The message is {1}"
.
format
(
...
...
@@ -57,6 +91,38 @@ def _debug_string_(proto, throw_on_error=True):
class
Variable
(
object
):
"""
Python variable. Every input and output of an operator is a variable. Every
variable belongs to a block. The variable has a name and two variables in
different blocks could have the same name.
There are many kinds of variables. Please reference the framework.proto for
details.
Notes: The constructor of Variable should not be invoked directly. Please
use `Block.create_var` to create a variable.
>>> cur_program = Program()
>>> cur_block = cur_program.current_block()
>>> new_variable = cur_block.create_var(
>>> name="X", shape=[-1, 23, 48], dtype='float32')
Args:
block(Block): The associated block. It will be passed by
`Block.create_var` automatically.
type(core.VarDesc.VarType): Variable type. Please reference the
framework.proto for details.
shape(tuple|list|None): The shape of variable. -1 means the batch size.
Some kinds of variable do not contain shape, just set it to None.
dtype(np.dtype|core.DataType|str): The data type of variable.
lod_level(int): The level of lod tensor. 0 means there is not a time
series data.
persistable(bool): True if the variable should be saved as check point.
Defaults to False.
stop_gradient(bool): True if the variable will stop to calculate
gradients when backward. Defaults to False.
"""
def
__init__
(
self
,
block
,
type
=
core
.
VarDesc
.
VarType
.
LOD_TENSOR
,
...
...
@@ -140,6 +206,16 @@ class Variable(object):
return
self
.
to_string
(
True
)
def
to_string
(
self
,
throw_on_error
):
"""
Get debug string.
Args:
throw_on_error(bool): True if raise an exception when self is not
intialized.
Returns(str): The debug string.
"""
protostr
=
self
.
desc
.
serialize_to_string
()
proto
=
framework_pb2
.
VarDesc
.
FromString
(
str
(
protostr
))
return
_debug_string_
(
proto
,
throw_on_error
)
...
...
@@ -185,7 +261,9 @@ class Variable(object):
def
get_all_op_protos
():
"""
Get all registered op proto from PaddlePaddle C++ end.
:return: A list of registered OpProto.
Returns(list): list of OpProto
"""
protostrs
=
core
.
get_all_op_protos
()
ret_values
=
[]
...
...
@@ -196,6 +274,10 @@ def get_all_op_protos():
class
OpProtoHolder
(
object
):
"""
A global variable to hold all OpProtos from C++ as a map
"""
@
classmethod
def
instance
(
cls
):
if
not
hasattr
(
cls
,
'_instance'
):
...
...
@@ -212,12 +294,26 @@ class OpProtoHolder(object):
self
.
op_proto_map
[
proto
.
type
]
=
proto
def
get_op_proto
(
self
,
type
):
"""
Get OpProto by a type string.
Args:
type(str): The type that operator registered in C++ side.
Returns(framework_pb2.OpProto): The OpProto
"""
if
type
not
in
self
.
op_proto_map
:
raise
ValueError
(
"Operator
\"
%s
\"
has not been registered."
%
type
)
return
self
.
op_proto_map
[
type
]
class
Operator
(
object
):
"""
Python Operator class. The operator represents the build in instructs in a
Block. Users can use the build in instructs to describe their neural
network.
"""
def
__init__
(
self
,
block
,
desc
,
...
...
@@ -225,6 +321,30 @@ class Operator(object):
inputs
=
None
,
outputs
=
None
,
attrs
=
None
):
"""
Constructor.
Notes: The constructor of operator should not be invoked directly. Use
Block.append_op or Block.prepend_op instead.
>>> cur_program = Program()
>>> cur_block = cur_program.current_block()
>>> # var1 += var2 + var3
>>> cur_block.append_op(type="sum",
>>> inputs={"X": [var1, var2, var3]},
>>> outputs={"Out": [var1]})
Args:
block(Block): The block has the current operator
desc(core.OpDesc): The protobuf description
type(str): The type of operator.
inputs(dict): The input dictionary. Key is the input parameter name.
Value is a list of variables.
outputs(dict): The output dictionary. Has same format with inputs
attrs(dict): The attributes dictionary. Key is attribute name. Value
is the attribute value. The attribute type should be as same as
the type registered in C++
"""
self
.
block
=
block
self
.
desc
=
desc
if
len
(
self
.
desc
.
type
())
!=
0
:
...
...
@@ -311,6 +431,15 @@ class Operator(object):
self
.
desc
.
infer_shape
(
self
.
block
.
desc
)
def
to_string
(
self
,
throw_on_error
):
"""
To debug string.
Args:
throw_on_error(bool): raise exception when self is not initialized
when throw_on_error is True
Returns(str): The debug string.
"""
protostr
=
self
.
desc
.
serialize_to_string
()
proto
=
framework_pb2
.
OpDesc
.
FromString
(
str
(
protostr
))
return
_debug_string_
(
proto
,
throw_on_error
)
...
...
@@ -325,21 +454,55 @@ class Operator(object):
return
self
.
desc
.
type
()
def
input
(
self
,
name
):
"""
Get input arguments by the input parameter name
Args:
name(str): The input parameter name
Returns(list): return the list of argument names associated with the
specific parameter name.
"""
return
self
.
desc
.
input
(
name
)
@
property
def
input_names
(
self
):
"""
Get all input parameter names
Returns(list): return a list of input parameter names
"""
return
self
.
desc
.
input_names
()
def
output
(
self
,
name
):
"""
Get output arguments by the output parameter name
Args:
name(str): The output parameter name
Returns(list): return the list of argument names associated with the
specific parameter name.
"""
return
self
.
desc
.
output
(
name
)
@
property
def
output_names
(
self
):
"""
Get all output parameter names
Returns(list): return a list of output parameter names
"""
return
self
.
desc
.
output_names
()
@
property
def
idx
(
self
):
"""
Return the array index of current operator.
Returns(int): The array index in block.ops array
Raises:
ValueError: when the operator is not found.
"""
for
i
,
op
in
enumerate
(
self
.
block
.
ops
):
if
op
==
self
:
return
i
...
...
@@ -347,19 +510,57 @@ class Operator(object):
"Can't find op itself in it's block. It could be a bug of Paddle."
)
def
has_attr
(
self
,
name
):
"""
operator has the attribute with name or not.
Args:
name(str): the attribute name
Returns(bool): True if has this attribute.
"""
return
self
.
desc
.
has_attr
(
name
)
def
attr_type
(
self
,
name
):
"""
Get the type of attribute by attribute name
Args:
name(str): the attribute name
Returns(core.AttrType): the attribute type
"""
return
self
.
desc
.
attr_type
(
name
)
@
property
def
attr_names
(
self
):
"""
Get all attribute names
Returns(list): The list of attribute name
"""
return
self
.
desc
.
attr_names
()
def
attr
(
self
,
name
):
"""
Get attribute by name
Args:
name(str): the attribute name
Returns(bool|int|str|float|list): The attribute value. The return value
can be any valid attribute type.
"""
return
self
.
desc
.
attr
(
name
)
def
block_attr
(
self
,
name
):
"""
Get the block attribute by name
Args:
name(str): the attribute name
Returns(int): the block index
"""
return
self
.
desc
.
block_attr
(
name
)
...
...
@@ -479,7 +680,7 @@ class Block(object):
"""
Copy the information of parameters from other block
Args:
other(Block): other block
other(Block): other block
Returns:
None
...
...
@@ -623,7 +824,7 @@ class Program(object):
def
copy_param_info_from
(
self
,
other
):
"""
Copy the information of parameters from other program.
Copy the information of parameters from other program.
Args:
other(Program): Other program
...
...
@@ -675,7 +876,7 @@ def default_startup_program():
"""
Get default startup program. In startup program, Paddle will initialize
parameters, initialize nccl handle, etc.
Returns:
Program: startup program
"""
...
...
@@ -685,7 +886,7 @@ def default_startup_program():
def
default_main_program
():
"""
Get default main program. The main program is used for training or testing.
Returns:
Program: main program
"""
...
...
@@ -695,7 +896,7 @@ def default_main_program():
def
switch_main_program
(
program
):
"""
Switch the main program to a new program.
Args:
program(Program): The new main program
...
...
@@ -710,7 +911,7 @@ def switch_main_program(program):
def
switch_startup_program
(
program
):
"""
Switch the startup program to a new program
Switch the startup program to a new program
Args:
program(Program): The new startup program
...
...
@@ -727,15 +928,15 @@ def switch_startup_program(program):
def
program_guard
(
main_program
,
startup_program
=
None
):
"""
Switch program with `with` statement
Examples:
>>> with program_guard(Program()):
>>> data = fluid.layers.data(...)
>>> hidden = fluid.layers.fc(...)
Args:
main_program(Program): New main program inside `with` statement
startup_program(Program): New startup program inside `with` statement.
startup_program(Program): New startup program inside `with` statement.
None means do not change startup program.
Returns:
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录