未验证 提交 582011ba 编写于 作者: C chengduo 提交者: GitHub

Add L2 unit test (#14792)

* add l2 unit test
test=develop

* code refine
test=develop
上级 f95ee9c0
......@@ -15,7 +15,12 @@
from __future__ import print_function
import unittest
from functools import partial
import contextlib
import numpy as np
import paddle
import paddle.fluid.core as core
import paddle.fluid as fluid
import paddle.fluid.framework as framework
import paddle.fluid.optimizer as optimizer
import paddle.fluid.regularizer as regularizer
......@@ -97,5 +102,134 @@ class TestL1DecayRegularizer(unittest.TestCase):
self.assertEqual(block.ops[-3].type, 'sign')
def bow_net(data,
label,
dict_dim,
is_sparse=False,
emb_dim=128,
hid_dim=128,
hid_dim2=96,
class_dim=2):
"""
BOW net
This model is from https://github.com/PaddlePaddle/models:
fluid/PaddleNLP/text_classification/nets.py
"""
emb = fluid.layers.embedding(
input=data, is_sparse=is_sparse, size=[dict_dim, emb_dim])
bow = fluid.layers.sequence_pool(input=emb, pool_type='sum')
bow_tanh = fluid.layers.tanh(bow)
fc_1 = fluid.layers.fc(input=bow_tanh, size=hid_dim, act="tanh")
fc_2 = fluid.layers.fc(input=fc_1, size=hid_dim2, act="tanh")
prediction = fluid.layers.fc(input=[fc_2], size=class_dim, act="softmax")
cost = fluid.layers.cross_entropy(input=prediction, label=label)
avg_cost = fluid.layers.mean(x=cost)
return avg_cost
class TestRegularizer(unittest.TestCase):
def setUp(self):
self.word_dict = paddle.dataset.imdb.word_dict()
reader = paddle.batch(
paddle.dataset.imdb.train(self.word_dict), batch_size=8)()
self.train_data = [next(reader) for _ in range(5)]
def get_places(self):
places = [core.CPUPlace()]
if core.is_compiled_with_cuda():
places.append(core.CUDAPlace(0))
return places
@contextlib.contextmanager
def scope_prog_guard(self, main_prog, startup_prog):
scope = fluid.core.Scope()
with fluid.unique_name.guard():
with fluid.scope_guard(scope):
with fluid.program_guard(main_prog, startup_prog):
yield
def run_program(self, place, feed_list):
exe = fluid.Executor(place)
feeder = fluid.DataFeeder(feed_list=feed_list, place=place)
exe.run(fluid.default_startup_program())
main_prog = fluid.default_main_program()
param_list = [var.name for var in main_prog.block(0).all_parameters()]
param_sum = []
for data in self.train_data:
out = exe.run(main_prog,
feed=feeder.feed(data),
fetch_list=param_list)
p_sum = 0
for v in out:
p_sum += np.sum(np.abs(v))
param_sum.append(p_sum)
return param_sum
def check_l2decay_regularizer(self, place, model):
main_prog = fluid.framework.Program()
startup_prog = fluid.framework.Program()
startup_prog.random_seed = 1
with self.scope_prog_guard(
main_prog=main_prog, startup_prog=startup_prog):
data = fluid.layers.data(
name="words", shape=[1], dtype="int64", lod_level=1)
label = fluid.layers.data(name="label", shape=[1], dtype="int64")
avg_cost = model(data, label, len(self.word_dict))
optimizer = fluid.optimizer.Adagrad(
learning_rate=0.1,
regularization=fluid.regularizer.L2Decay(1.0))
optimizer.minimize(avg_cost)
param_sum = self.run_program(place, [data, label])
return param_sum
def check_l2decay(self, place, model):
main_prog = fluid.framework.Program()
startup_prog = fluid.framework.Program()
startup_prog.random_seed = 1
with self.scope_prog_guard(
main_prog=main_prog, startup_prog=startup_prog):
data = fluid.layers.data(
name="words", shape=[1], dtype="int64", lod_level=1)
label = fluid.layers.data(name="label", shape=[1], dtype="int64")
avg_cost_l2 = model(data, label, len(self.word_dict))
param_list = fluid.default_main_program().block(0).all_parameters()
para_sum = []
for para in param_list:
para_mul = fluid.layers.square(x=para)
para_sum.append(fluid.layers.reduce_sum(input=para_mul))
avg_cost_l2 += fluid.layers.sums(para_sum) * .5
optimizer = fluid.optimizer.Adagrad(learning_rate=0.1)
optimizer.minimize(avg_cost_l2)
param_sum = self.run_program(place, [data, label])
return param_sum
def test_l2(self):
for place in self.get_places():
dense_sparse_p_sum = []
for sparse in [True, False]:
model = partial(bow_net, is_sparse=sparse)
framework_l2 = self.check_l2decay_regularizer(place, model)
l2 = self.check_l2decay(place, model)
assert len(l2) == len(framework_l2)
for i in range(len(l2)):
assert np.isclose(a=framework_l2[i], b=l2[i], rtol=5e-5)
dense_sparse_p_sum.append(framework_l2)
assert len(dense_sparse_p_sum[0]) == len(dense_sparse_p_sum[1])
for i in range(len(dense_sparse_p_sum[0])):
assert np.isclose(
a=dense_sparse_p_sum[0][i],
b=dense_sparse_p_sum[1][i],
rtol=5e-5)
if __name__ == '__main__':
unittest.main()
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册