Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleDetection
提交
57bbee65
P
PaddleDetection
项目概览
PaddlePaddle
/
PaddleDetection
大约 1 年 前同步成功
通知
695
Star
11112
Fork
2696
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
184
列表
看板
标记
里程碑
合并请求
40
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
184
Issue
184
列表
看板
标记
里程碑
合并请求
40
合并请求
40
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
57bbee65
编写于
11月 16, 2017
作者:
Q
qingqing01
提交者:
GitHub
11月 16, 2017
浏览文件
操作
浏览文件
下载
差异文件
Merge branch 'develop' into cmake_speed
上级
0968c7cd
d7bf372d
变更
7
隐藏空白更改
内联
并排
Showing
7 changed file
with
386 addition
and
38 deletion
+386
-38
paddle/operators/CMakeLists.txt
paddle/operators/CMakeLists.txt
+7
-2
paddle/operators/adagrad_op.cc
paddle/operators/adagrad_op.cc
+85
-5
paddle/operators/adagrad_op.cu
paddle/operators/adagrad_op.cu
+133
-2
paddle/operators/adagrad_op.h
paddle/operators/adagrad_op.h
+45
-21
paddle/operators/sgd_op.cu
paddle/operators/sgd_op.cu
+8
-7
paddle/operators/sum_op.cc
paddle/operators/sum_op.cc
+0
-1
python/paddle/v2/fluid/tests/test_adagrad_op.py
python/paddle/v2/fluid/tests/test_adagrad_op.py
+108
-0
未找到文件。
paddle/operators/CMakeLists.txt
浏览文件 @
57bbee65
...
...
@@ -183,15 +183,20 @@ set(DEPS_OPS
array_to_lod_tensor_op
lstm_op
tensor_array_read_write_op
gru_op
)
gru_op
adagrad_op
sgd_op
)
op_library
(
cond_op SRCS cond_op.cc DEPS framework_proto tensor operator net_op
)
op_library
(
cross_entropy_op DEPS cross_entropy
)
op_library
(
softmax_with_cross_entropy_op DEPS cross_entropy softmax
)
op_library
(
softmax_op DEPS softmax
)
op_library
(
sequence_softmax_op DEPS softmax
)
op_library
(
sum_op DEPS selected_rows_functor
)
op_library
(
sgd_op DEPS selected_rows_functor
)
op_library
(
adagrad_op DEPS selected_rows_functor
)
op_library
(
conv_op DEPS vol2col
)
op_library
(
sum_op DEPS net_op selected_rows_functor
)
op_library
(
pool_op DEPS pooling
)
op_library
(
pool_with_index_op DEPS pooling
)
op_library
(
lod_rank_table_op SRCS lod_rank_table_op.cc DEPS lod_rank_table
)
...
...
paddle/operators/adagrad_op.cc
浏览文件 @
57bbee65
...
...
@@ -14,6 +14,11 @@ limitations under the License. */
#include "paddle/operators/adagrad_op.h"
#include <cmath>
#include "paddle/operators/math/math_function.h"
#include "paddle/operators/math/selected_rows_functor.h"
namespace
paddle
{
namespace
operators
{
...
...
@@ -21,7 +26,7 @@ class AdagradOp : public framework::OperatorWithKernel {
public:
using
framework
::
OperatorWithKernel
::
OperatorWithKernel
;
void
InferShape
(
framework
::
InferShapeContext
*
ctx
)
const
override
{
void
InferShape
(
framework
::
InferShapeContext
*
ctx
)
const
override
{
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"Param"
),
"Input(Param) of AdagradOp should not be null."
);
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"Grad"
),
...
...
@@ -54,8 +59,8 @@ class AdagradOp : public framework::OperatorWithKernel {
class
AdagradOpMaker
:
public
framework
::
OpProtoAndCheckerMaker
{
public:
AdagradOpMaker
(
framework
::
OpProto
*
proto
,
framework
::
OpAttrChecker
*
op_checker
)
AdagradOpMaker
(
framework
::
OpProto
*
proto
,
framework
::
OpAttrChecker
*
op_checker
)
:
OpProtoAndCheckerMaker
(
proto
,
op_checker
)
{
AddInput
(
"Param"
,
"(Tensor) Input parameter"
);
AddInput
(
"Grad"
,
"(Tensor) Input gradient"
);
...
...
@@ -87,10 +92,85 @@ for numerical stability to avoid the division by zero error.
)DOC"
);
}
};
namespace
{
size_t
FindPos
(
const
std
::
vector
<
int64_t
>&
rows
,
int64_t
value
)
{
return
std
::
find
(
rows
.
begin
(),
rows
.
end
(),
value
)
-
rows
.
begin
();
}
}
// namespace
template
<
typename
T
>
struct
SparseAdagradFunctor
<
platform
::
CPUPlace
,
T
>
{
void
operator
()(
const
platform
::
DeviceContext
&
context
,
const
framework
::
SelectedRows
&
grad
,
const
framework
::
Tensor
&
learning_rate
,
T
epsilon
,
framework
::
Tensor
*
moment
,
framework
::
Tensor
*
param
)
{
// 1. g_m.rows = set(g.rows)
auto
grad_rows
=
grad
.
rows
();
std
::
set
<
int64_t
>
row_set
(
grad_rows
.
begin
(),
grad_rows
.
end
());
std
::
vector
<
int64_t
>
merge_rows
(
row_set
.
begin
(),
row_set
.
end
());
auto
grad_width
=
grad
.
value
().
dims
()[
1
];
std
::
unique_ptr
<
framework
::
SelectedRows
>
grad_merge
{
new
framework
::
SelectedRows
()};
grad_merge
->
set_rows
(
merge_rows
);
grad_merge
->
set_height
(
grad
.
height
());
grad_merge
->
mutable_value
()
->
mutable_data
<
T
>
(
framework
::
make_ddim
(
{
static_cast
<
int64_t
>
(
merge_rows
.
size
()),
grad_width
}),
context
.
GetPlace
());
math
::
SetConstant
<
platform
::
CPUPlace
,
T
>
constant_functor
;
constant_functor
(
context
,
grad_merge
->
mutable_value
(),
0.0
);
auto
*
grad_merge_data
=
grad_merge
->
mutable_value
()
->
data
<
T
>
();
auto
*
grad_data
=
grad
.
value
().
data
<
T
>
();
for
(
size_t
i
=
0
;
i
<
grad_rows
.
size
();
i
++
)
{
size_t
grad_merge_i
=
FindPos
(
merge_rows
,
grad_rows
[
i
]);
for
(
int64_t
j
=
0
;
j
<
grad_width
;
j
++
)
{
grad_merge_data
[
grad_merge_i
*
grad_width
+
j
]
+=
grad_data
[
i
*
grad_width
+
j
];
}
}
// 2. m += g_m * g_m
std
::
unique_ptr
<
framework
::
SelectedRows
>
grad_square
{
new
framework
::
SelectedRows
()};
grad_square
->
set_rows
(
grad_merge
->
rows
());
grad_square
->
set_height
(
grad_merge
->
height
());
grad_square
->
mutable_value
()
->
mutable_data
<
T
>
(
grad_merge
->
value
().
dims
(),
context
.
GetPlace
());
auto
gs
=
framework
::
EigenVector
<
T
>::
Flatten
(
*
(
grad_square
->
mutable_value
()));
auto
gm
=
framework
::
EigenVector
<
T
>::
Flatten
(
grad_merge
->
value
());
gs
.
device
(
*
context
.
GetEigenDevice
<
platform
::
CPUPlace
>
())
=
gm
*
gm
;
math
::
SelectedRowsAddToTensor
<
platform
::
CPUPlace
,
T
>
functor
;
functor
(
context
,
*
grad_square
,
moment
);
// 3. update parameter
auto
*
lr
=
learning_rate
.
data
<
T
>
();
auto
*
param_data
=
param
->
data
<
T
>
();
auto
*
moment_data
=
moment
->
data
<
T
>
();
for
(
size_t
i
=
0
;
i
<
merge_rows
.
size
();
i
++
)
{
for
(
int64_t
j
=
0
;
j
<
grad_width
;
j
++
)
{
param_data
[
merge_rows
[
i
]
*
grad_width
+
j
]
-=
lr
[
0
]
*
grad_merge_data
[
i
*
grad_width
+
j
]
/
(
std
::
sqrt
(
moment_data
[
merge_rows
[
i
]
*
grad_width
+
j
])
+
epsilon
);
}
}
}
};
template
struct
SparseAdagradFunctor
<
platform
::
CPUPlace
,
float
>;
template
struct
SparseAdagradFunctor
<
platform
::
CPUPlace
,
double
>;
}
// namespace operators
}
// namespace paddle
namespace
ops
=
paddle
::
operators
;
REGISTER_OP_WITHOUT_GRADIENT
(
adagrad
,
ops
::
AdagradOp
,
ops
::
AdagradOpMaker
);
REGISTER_OP_CPU_KERNEL
(
adagrad
,
ops
::
AdagradOpKernel
<
paddle
::
platform
::
CPUPlace
,
float
>
);
REGISTER_OP_CPU_KERNEL
(
adagrad
,
ops
::
AdagradOpKernel
<
paddle
::
platform
::
CPUPlace
,
float
>
,
ops
::
AdagradOpKernel
<
paddle
::
platform
::
CPUPlace
,
double
>
);
paddle/operators/adagrad_op.cu
浏览文件 @
57bbee65
...
...
@@ -14,7 +14,138 @@
#define EIGEN_USE_GPU
#include "paddle/operators/adagrad_op.h"
#include "paddle/operators/math/selected_rows_functor.h"
#include "paddle/operators/math/math_function.h"
#include "paddle/platform/cuda_helper.h"
namespace
paddle
{
namespace
operators
{
namespace
{
template
<
typename
T
,
int
block_size
>
__global__
void
MergeGradKernel
(
const
T
*
grad
,
const
int64_t
*
grad_rows
,
T
*
grad_merge
,
const
int64_t
*
grad_merge_rows
,
size_t
grad_merge_rows_size
,
int64_t
row_numel
)
{
const
int
ty
=
blockIdx
.
y
;
int
tid
=
threadIdx
.
x
;
__shared__
size_t
grad_merge_idx
;
if
(
tid
==
0
)
{
for
(
size_t
i
=
0
;
i
<
grad_merge_rows_size
;
i
++
)
{
if
(
grad_rows
[
ty
]
==
grad_merge_rows
[
i
])
{
grad_merge_idx
=
i
;
}
}
}
__syncthreads
();
grad
+=
ty
*
row_numel
;
grad_merge
+=
grad_merge_idx
*
row_numel
;
for
(
int
index
=
tid
;
index
<
row_numel
;
index
+=
block_size
)
{
paddle
::
platform
::
CudaAtomicAdd
(
grad_merge
+
index
,
grad
[
index
]);
}
}
template
<
typename
T
,
int
block_size
>
__global__
void
SparseAdagradFunctorKernel
(
const
T
*
grad
,
const
int64_t
*
rows
,
const
T
*
learning_rate
,
T
*
param
,
T
*
moment
,
int64_t
row_numel
,
T
epsilon
)
{
const
int
ty
=
blockIdx
.
y
;
int
tid
=
threadIdx
.
x
;
grad
+=
ty
*
row_numel
;
param
+=
rows
[
ty
]
*
row_numel
;
moment
+=
rows
[
ty
]
*
row_numel
;
for
(
int
index
=
tid
;
index
<
row_numel
;
index
+=
block_size
)
{
// Since index in rows of SelectedRows can be duplicate, we have to use
// Atomic Operation to avoid concurrent write error.
paddle
::
platform
::
CudaAtomicAdd
(
param
+
index
,
-
1.0
*
learning_rate
[
0
]
*
grad
[
index
]
/
(
sqrt
(
moment
[
index
])
+
epsilon
));
}
}
}
// namespace
template
<
typename
T
>
struct
SparseAdagradFunctor
<
platform
::
GPUPlace
,
T
>
{
void
operator
()(
const
platform
::
DeviceContext
&
context
,
const
framework
::
SelectedRows
&
grad
,
const
framework
::
Tensor
&
learning_rate
,
T
epsilon
,
framework
::
Tensor
*
moment
,
framework
::
Tensor
*
param
)
{
// 1. g_m.rows = set(g.rows)
auto
grad_rows
=
grad
.
rows
();
std
::
set
<
int64_t
>
row_set
(
grad_rows
.
begin
(),
grad_rows
.
end
());
std
::
vector
<
int64_t
>
merge_rows
(
row_set
.
begin
(),
row_set
.
end
());
auto
grad_width
=
grad
.
value
().
dims
()[
1
];
std
::
unique_ptr
<
framework
::
SelectedRows
>
grad_merge
{
new
framework
::
SelectedRows
()};
grad_merge
->
set_rows
(
merge_rows
);
grad_merge
->
set_height
(
grad
.
height
());
grad_merge
->
mutable_value
()
->
mutable_data
<
T
>
(
framework
::
make_ddim
(
{
static_cast
<
int64_t
>
(
merge_rows
.
size
()),
grad_width
}),
context
.
GetPlace
());
math
::
SetConstant
<
platform
::
GPUPlace
,
T
>
constant_functor
;
constant_functor
(
context
,
grad_merge
->
mutable_value
(),
0.0
);
auto
*
grad_merge_data
=
grad_merge
->
mutable_value
()
->
data
<
T
>
();
auto
*
grad_data
=
grad
.
value
().
data
<
T
>
();
const
int
block_size
=
256
;
dim3
threads
(
block_size
,
1
);
dim3
grid1
(
1
,
grad_rows
.
size
());
MergeGradKernel
<
T
,
256
><<<
grid1
,
threads
,
0
,
reinterpret_cast
<
const
platform
::
CUDADeviceContext
&>
(
context
)
.
stream
()
>>>
(
grad_data
,
grad
.
rows
().
data
(),
grad_merge_data
,
grad_merge
->
rows
().
data
(),
grad_merge
->
rows
().
size
(),
grad_width
);
// 2. m += g_m * g_m
std
::
unique_ptr
<
framework
::
SelectedRows
>
grad_square
{
new
framework
::
SelectedRows
()};
grad_square
->
set_rows
(
grad_merge
->
rows
());
grad_square
->
set_height
(
grad_merge
->
height
());
grad_square
->
mutable_value
()
->
mutable_data
<
T
>
(
grad_merge
->
value
().
dims
(),
context
.
GetPlace
());
auto
gs
=
framework
::
EigenVector
<
T
>::
Flatten
(
*
(
grad_square
->
mutable_value
()));
auto
gm
=
framework
::
EigenVector
<
T
>::
Flatten
(
grad_merge
->
value
());
gs
.
device
(
*
context
.
GetEigenDevice
<
platform
::
GPUPlace
>
())
=
gm
*
gm
;
math
::
SelectedRowsAddToTensor
<
platform
::
GPUPlace
,
T
>
functor
;
functor
(
context
,
*
grad_square
,
moment
);
// 3. update parameter
auto
*
lr
=
learning_rate
.
data
<
T
>
();
auto
*
param_data
=
param
->
data
<
T
>
();
auto
*
moment_data
=
moment
->
data
<
T
>
();
dim3
grid2
(
1
,
merge_rows
.
size
());
SparseAdagradFunctorKernel
<
T
,
256
><<<
grid2
,
threads
,
0
,
reinterpret_cast
<
const
platform
::
CUDADeviceContext
&>
(
context
)
.
stream
()
>>>
(
grad_merge_data
,
grad_merge
->
rows
().
data
(),
lr
,
param_data
,
moment_data
,
grad_width
,
epsilon
);
}
};
template
struct
SparseAdagradFunctor
<
platform
::
GPUPlace
,
float
>;
template
struct
SparseAdagradFunctor
<
platform
::
GPUPlace
,
double
>;
}
// namespace operators
}
// namespace paddle
namespace
ops
=
paddle
::
operators
;
REGISTER_OP_GPU_KERNEL
(
adagrad
,
ops
::
AdagradOpKernel
<
paddle
::
platform
::
GPUPlace
,
float
>
);
REGISTER_OP_GPU_KERNEL
(
adagrad
,
ops
::
AdagradOpKernel
<
paddle
::
platform
::
GPUPlace
,
float
>
,
ops
::
AdagradOpKernel
<
paddle
::
platform
::
GPUPlace
,
double
>
);
paddle/operators/adagrad_op.h
浏览文件 @
57bbee65
...
...
@@ -19,35 +19,59 @@ limitations under the License. */
namespace
paddle
{
namespace
operators
{
template
<
typename
Place
,
typename
T
>
struct
SparseAdagradFunctor
{
void
operator
()(
const
platform
::
DeviceContext
&
context
,
const
framework
::
SelectedRows
&
grad
,
const
framework
::
Tensor
&
learning_rate
,
T
epsilon
,
framework
::
Tensor
*
moment
,
framework
::
Tensor
*
param
);
};
template
<
typename
Place
,
typename
T
>
class
AdagradOpKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
auto
param_out_tensor
=
ctx
.
Output
<
framework
::
Tensor
>
(
"ParamOut"
);
auto
moment_out_tensor
=
ctx
.
Output
<
framework
::
Tensor
>
(
"MomentOut"
);
auto
*
param_out_tensor
=
ctx
.
Output
<
framework
::
Tensor
>
(
"ParamOut"
);
auto
*
moment_out_tensor
=
ctx
.
Output
<
framework
::
Tensor
>
(
"MomentOut"
);
param_out_tensor
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
moment_out_tensor
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
float
epsilon
=
ctx
.
Attr
<
float
>
(
"epsilon"
);
auto
param
=
framework
::
EigenVector
<
T
>::
Flatten
(
*
ctx
.
Input
<
framework
::
Tensor
>
(
"Param"
));
auto
grad
=
framework
::
EigenVector
<
T
>::
Flatten
(
*
ctx
.
Input
<
framework
::
Tensor
>
(
"Grad"
));
auto
moment
=
framework
::
EigenVector
<
T
>::
Flatten
(
*
ctx
.
Input
<
framework
::
Tensor
>
(
"Moment"
));
auto
lr
=
framework
::
EigenVector
<
T
>::
Flatten
(
*
ctx
.
Input
<
framework
::
Tensor
>
(
"LearningRate"
));
auto
param_out
=
framework
::
EigenVector
<
T
>::
Flatten
(
*
param_out_tensor
);
auto
moment_out
=
framework
::
EigenVector
<
T
>::
Flatten
(
*
moment_out_tensor
);
auto
place
=
ctx
.
GetEigenDevice
<
Place
>
();
moment_out
.
device
(
place
)
=
moment
+
grad
*
grad
;
Eigen
::
DSizes
<
int
,
1
>
m_dsize
(
moment_out_tensor
->
numel
());
param_out
.
device
(
place
)
=
param
-
lr
.
broadcast
(
m_dsize
)
*
grad
/
(
moment_out
.
sqrt
()
+
epsilon
);
T
epsilon
=
static_cast
<
T
>
(
ctx
.
Attr
<
float
>
(
"epsilon"
));
auto
*
grad_var
=
ctx
.
InputVar
(
"Grad"
);
if
(
grad_var
->
IsType
<
framework
::
LoDTensor
>
())
{
auto
param
=
framework
::
EigenVector
<
T
>::
Flatten
(
*
ctx
.
Input
<
framework
::
Tensor
>
(
"Param"
));
auto
grad
=
framework
::
EigenVector
<
T
>::
Flatten
(
*
ctx
.
Input
<
framework
::
Tensor
>
(
"Grad"
));
auto
moment
=
framework
::
EigenVector
<
T
>::
Flatten
(
*
ctx
.
Input
<
framework
::
Tensor
>
(
"Moment"
));
auto
lr
=
framework
::
EigenVector
<
T
>::
Flatten
(
*
ctx
.
Input
<
framework
::
Tensor
>
(
"LearningRate"
));
auto
param_out
=
framework
::
EigenVector
<
T
>::
Flatten
(
*
param_out_tensor
);
auto
moment_out
=
framework
::
EigenVector
<
T
>::
Flatten
(
*
moment_out_tensor
);
auto
place
=
ctx
.
GetEigenDevice
<
Place
>
();
moment_out
.
device
(
place
)
=
moment
+
grad
*
grad
;
Eigen
::
DSizes
<
int
,
1
>
m_dsize
(
moment_out_tensor
->
numel
());
param_out
.
device
(
place
)
=
param
-
lr
.
broadcast
(
m_dsize
)
*
grad
/
(
moment_out
.
sqrt
()
+
epsilon
);
}
else
if
(
grad_var
->
IsType
<
framework
::
SelectedRows
>
())
{
auto
*
param_tensor
=
ctx
.
Input
<
framework
::
Tensor
>
(
"Param"
);
PADDLE_ENFORCE_EQ
(
param_tensor
,
param_out_tensor
);
auto
*
moment_tensor
=
ctx
.
Input
<
framework
::
Tensor
>
(
"Moment"
);
PADDLE_ENFORCE_EQ
(
moment_tensor
,
moment_out_tensor
);
SparseAdagradFunctor
<
Place
,
T
>
functor
;
functor
(
ctx
.
device_context
(),
*
ctx
.
Input
<
framework
::
SelectedRows
>
(
"Grad"
),
*
ctx
.
Input
<
framework
::
Tensor
>
(
"LearningRate"
),
epsilon
,
moment_out_tensor
,
param_out_tensor
);
}
else
{
PADDLE_THROW
(
"Unsupported Variable Type of Grad"
);
}
}
};
...
...
paddle/operators/sgd_op.cu
浏览文件 @
57bbee65
...
...
@@ -20,11 +20,11 @@ namespace paddle {
namespace
operators
{
namespace
{
template
<
typename
T
>
template
<
typename
T
,
int
block_size
>
__global__
void
SparseSGDFunctorKernel
(
const
T
*
selected_rows
,
const
int64_t
*
rows
,
const
T
*
learning_rate
,
T
*
tensor_out
,
int64_t
row_numel
,
int
block_size
)
{
int64_t
row_numel
)
{
const
int
ty
=
blockIdx
.
y
;
int
tid
=
threadIdx
.
x
;
...
...
@@ -59,14 +59,15 @@ struct SparseSGDFunctor<platform::GPUPlace, T> {
auto
*
in_data
=
in_value
.
data
<
T
>
();
auto
*
out_data
=
output
->
data
<
T
>
();
int
block_size
=
256
;
const
int
block_size
=
256
;
dim3
threads
(
block_size
,
1
);
dim3
grid
(
1
,
in_rows
.
size
());
SparseSGDFunctorKernel
<
T
><<<
grid
,
threads
,
0
,
reinterpret_cast
<
const
platform
::
CUDADeviceContext
&>
(
context
)
.
stream
()
>>>
(
in_data
,
in_rows
.
data
(),
learning_rate
.
data
<
T
>
(),
out_data
,
in_row_numel
,
block_size
);
T
,
256
><<<
grid
,
threads
,
0
,
reinterpret_cast
<
const
platform
::
CUDADeviceContext
&>
(
context
)
.
stream
()
>>>
(
in_data
,
in_rows
.
data
(),
learning_rate
.
data
<
T
>
(),
out_data
,
in_row_numel
);
}
};
...
...
paddle/operators/sum_op.cc
浏览文件 @
57bbee65
...
...
@@ -12,7 +12,6 @@ limitations under the License. */
#include "paddle/operators/sum_op.h"
#include <vector>
#include "paddle/framework/var_type_inference.h"
#include "paddle/operators/net_op.h"
namespace
paddle
{
namespace
operators
{
...
...
python/paddle/v2/fluid/tests/test_adagrad_op.py
浏览文件 @
57bbee65
import
unittest
import
numpy
as
np
import
paddle.v2.fluid.core
as
core
from
paddle.v2.fluid.op
import
Operator
from
op_test
import
OpTest
import
math
class
TestAdagradOp1
(
OpTest
):
...
...
@@ -65,5 +68,110 @@ class TestAdagradOp2(OpTest):
self
.
check_output
()
class
TestSparseAdagradOp
(
unittest
.
TestCase
):
def
check_with_place
(
self
,
place
):
scope
=
core
.
Scope
()
# create and initialize Grad Variable
height
=
10
rows
=
[
0
,
4
,
7
,
4
]
row_numel
=
12
grad_selected_rows
=
scope
.
var
(
'Grad'
).
get_selected_rows
()
grad_selected_rows
.
set_height
(
height
)
grad_selected_rows
.
set_rows
(
rows
)
np_array
=
np
.
ones
((
len
(
rows
),
row_numel
)).
astype
(
"float32"
)
np_array
[
0
,
0
]
=
2.0
np_array
[
2
,
8
]
=
4.0
grad_tensor
=
grad_selected_rows
.
get_tensor
()
grad_tensor
.
set
(
np_array
,
place
)
# create and initialize Param Variable
param
=
scope
.
var
(
'Param'
).
get_tensor
()
param_array
=
np
.
full
((
height
,
row_numel
),
5.0
).
astype
(
"float32"
)
param
.
set
(
param_array
,
place
)
# create and initialize LeraningRate Variable
lr
=
scope
.
var
(
'LearningRate'
).
get_tensor
()
lr_array
=
np
.
full
((
1
),
2.0
).
astype
(
"float32"
)
lr
.
set
(
lr_array
,
place
)
# create and initialize moment Variable
moment
=
scope
.
var
(
'Moment'
).
get_tensor
()
moment_np_array
=
np
.
full
((
height
,
row_numel
),
2.0
).
astype
(
"float32"
)
moment
.
set
(
moment_np_array
,
place
)
# create and run sgd operator
adagrad_op
=
Operator
(
"adagrad"
,
Param
=
'Param'
,
Grad
=
'Grad'
,
ParamOut
=
'Param'
,
Moment
=
'Moment'
,
MomentOut
=
'Moment'
,
LearningRate
=
'LearningRate'
,
epsilon
=
2.0
)
ctx
=
core
.
DeviceContext
.
create
(
place
)
adagrad_op
.
run
(
scope
,
ctx
)
# get and compare moment result
moment_result_array
=
np
.
array
(
moment
)
self
.
assertAlmostEqual
(
6.0
,
moment_result_array
[
rows
[
0
],
0
])
self
.
assertAlmostEqual
(
3.0
,
moment_result_array
[
rows
[
0
],
2
])
self
.
assertAlmostEqual
(
2.0
,
moment_result_array
[
1
,
0
])
# 2.0 + (1.0 + 1.0)^2
self
.
assertAlmostEqual
(
6.0
,
moment_result_array
[
rows
[
1
],
10
])
self
.
assertAlmostEqual
(
6.0
,
moment_result_array
[
rows
[
3
],
4
])
self
.
assertAlmostEqual
(
2.0
,
moment_result_array
[
5
,
8
])
self
.
assertAlmostEqual
(
3.0
,
moment_result_array
[
rows
[
2
],
1
])
self
.
assertAlmostEqual
(
18.0
,
moment_result_array
[
rows
[
2
],
8
])
# get and compare param result
result_array
=
np
.
array
(
param
)
def
get_out
(
param
,
lr
,
grad
,
m
,
epsilon
):
return
param
-
lr
*
grad
/
(
math
.
sqrt
(
m
)
+
epsilon
)
self
.
assertAlmostEqual
(
get_out
(
5.0
,
2.0
,
2.0
,
6.0
,
2.0
),
result_array
[
rows
[
0
],
0
],
places
=
5
)
self
.
assertAlmostEqual
(
get_out
(
5.0
,
2.0
,
1.0
,
3.0
,
2.0
),
result_array
[
rows
[
0
],
2
],
places
=
5
)
self
.
assertAlmostEqual
(
get_out
(
5.0
,
2.0
,
0.0
,
2.0
,
2.0
),
result_array
[
1
,
0
],
places
=
5
)
# grad_merge = 1.0 + 1.0
# m = 6.0
self
.
assertAlmostEqual
(
get_out
(
5.0
,
2.0
,
2.0
,
6.0
,
2.0
),
result_array
[
rows
[
1
],
10
],
places
=
5
)
self
.
assertAlmostEqual
(
get_out
(
5.0
,
2.0
,
0.0
,
2.0
,
2.0
),
result_array
[
5
,
8
],
places
=
5
)
self
.
assertAlmostEqual
(
get_out
(
5.0
,
2.0
,
1.0
,
3.0
,
2.0
),
result_array
[
rows
[
2
],
1
],
places
=
5
)
self
.
assertAlmostEqual
(
get_out
(
5.0
,
2.0
,
4.0
,
18.0
,
2.0
),
result_array
[
rows
[
2
],
8
],
places
=
5
)
def
test_sparse_adagrad
(
self
):
places
=
[
core
.
CPUPlace
()]
if
core
.
is_compile_gpu
():
places
.
append
(
core
.
GPUPlace
(
0
))
for
place
in
places
:
self
.
check_with_place
(
place
)
if
__name__
==
"__main__"
:
unittest
.
main
()
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录