Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleDetection
提交
576e7f47
P
PaddleDetection
项目概览
PaddlePaddle
/
PaddleDetection
大约 1 年 前同步成功
通知
695
Star
11112
Fork
2696
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
184
列表
看板
标记
里程碑
合并请求
40
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
184
Issue
184
列表
看板
标记
里程碑
合并请求
40
合并请求
40
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
576e7f47
编写于
5月 19, 2017
作者:
D
dangqingqing
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Support variable-dimension for convolution operation.
上级
dc530a71
变更
5
隐藏空白更改
内联
并排
Showing
5 changed file
with
73 addition
and
13 deletion
+73
-13
demo/sentiment/train_v2.py
demo/sentiment/train_v2.py
+2
-1
paddle/py_paddle/dataprovider_converter.py
paddle/py_paddle/dataprovider_converter.py
+31
-8
python/paddle/trainer/PyDataProvider2.py
python/paddle/trainer/PyDataProvider2.py
+14
-3
python/paddle/v2/data_type.py
python/paddle/v2/data_type.py
+2
-1
python/paddle/v2/tests/test_data_feeder.py
python/paddle/v2/tests/test_data_feeder.py
+24
-0
未找到文件。
demo/sentiment/train_v2.py
浏览文件 @
576e7f47
...
@@ -103,7 +103,7 @@ def stacked_lstm_net(input_dim,
...
@@ -103,7 +103,7 @@ def stacked_lstm_net(input_dim,
if
__name__
==
'__main__'
:
if
__name__
==
'__main__'
:
# init
# init
paddle
.
init
(
use_gpu
=
False
)
paddle
.
init
(
use_gpu
=
False
,
log_clipping
=
True
)
#data
#data
print
'load dictionary...'
print
'load dictionary...'
...
@@ -131,6 +131,7 @@ if __name__ == '__main__':
...
@@ -131,6 +131,7 @@ if __name__ == '__main__':
# create optimizer
# create optimizer
adam_optimizer
=
paddle
.
optimizer
.
Adam
(
adam_optimizer
=
paddle
.
optimizer
.
Adam
(
learning_rate
=
2e-3
,
learning_rate
=
2e-3
,
gradient_clipping_threshold
=
0.003
,
regularization
=
paddle
.
optimizer
.
L2Regularization
(
rate
=
8e-4
),
regularization
=
paddle
.
optimizer
.
L2Regularization
(
rate
=
8e-4
),
model_average
=
paddle
.
optimizer
.
ModelAverage
(
average_window
=
0.5
))
model_average
=
paddle
.
optimizer
.
ModelAverage
(
average_window
=
0.5
))
...
...
paddle/py_paddle/dataprovider_converter.py
浏览文件 @
576e7f47
...
@@ -17,6 +17,7 @@ import collections
...
@@ -17,6 +17,7 @@ import collections
import
swig_paddle
import
swig_paddle
import
numpy
import
numpy
import
itertools
import
itertools
from
functools
import
reduce
__all__
=
[
'DataProviderConverter'
]
__all__
=
[
'DataProviderConverter'
]
...
@@ -59,12 +60,14 @@ class IScanner(object):
...
@@ -59,12 +60,14 @@ class IScanner(object):
"""
"""
pass
pass
def
finish_pre_scan
(
self
,
argument
):
def
finish_pre_scan
(
self
,
argument
,
dat
=
None
):
"""
"""
Finish first scan pass. Allocate the memory.
Finish first scan pass. Allocate the memory.
:param argument: Output arguments object.
:param argument: Output arguments object.
:type argument: swig_paddle.Arguments
:type argument: swig_paddle.Arguments
:param dat: Output arguments object.
:type dat: The Python object, numpy.array or List.
:return:
:return:
"""
"""
pass
pass
...
@@ -95,17 +98,27 @@ class DenseScanner(IScanner):
...
@@ -95,17 +98,27 @@ class DenseScanner(IScanner):
def
__init__
(
self
,
input_type
,
pos
):
def
__init__
(
self
,
input_type
,
pos
):
IScanner
.
__init__
(
self
,
input_type
,
pos
)
IScanner
.
__init__
(
self
,
input_type
,
pos
)
self
.
__mat__
=
None
self
.
__mat__
=
None
self
.
__shape__
=
None
self
.
__height__
=
0
self
.
__height__
=
0
def
pre_scan
(
self
,
dat
):
def
pre_scan
(
self
,
dat
):
self
.
__height__
+=
1
self
.
__height__
+=
1
def
finish_pre_scan
(
self
,
argument
):
def
finish_pre_scan
(
self
,
argument
,
dat
=
None
):
self
.
__shape__
=
numpy
.
array
(
dat
).
shape
if
len
(
self
.
__shape__
)
>
3
:
raise
ValueError
(
"The dimension of input is greater than 3."
)
dim
=
reduce
(
lambda
x
,
y
:
x
*
y
,
self
.
__shape__
)
if
len
(
self
.
__shape__
)
==
1
:
assert
dim
==
self
.
input_type
.
dim
self
.
__mat__
=
numpy
.
ndarray
(
self
.
__mat__
=
numpy
.
ndarray
(
shape
=
(
self
.
__height__
,
self
.
input_type
.
dim
),
dtype
=
numpy
.
float32
)
shape
=
(
self
.
__height__
,
dim
),
dtype
=
numpy
.
float32
)
self
.
__height__
=
0
self
.
__height__
=
0
def
scan
(
self
,
dat
):
def
scan
(
self
,
dat
):
if
isinstance
(
dat
,
numpy
.
ndarray
):
assert
self
.
__shape__
==
dat
.
shape
dat
=
dat
.
flatten
()
self
.
__mat__
[
self
.
__height__
]
=
dat
self
.
__mat__
[
self
.
__height__
]
=
dat
self
.
__height__
+=
1
self
.
__height__
+=
1
...
@@ -116,6 +129,13 @@ class DenseScanner(IScanner):
...
@@ -116,6 +129,13 @@ class DenseScanner(IScanner):
m
=
swig_paddle
.
Matrix
.
createDenseFromNumpy
(
self
.
__mat__
,
True
,
m
=
swig_paddle
.
Matrix
.
createDenseFromNumpy
(
self
.
__mat__
,
True
,
self
.
data_in_gpu
)
self
.
data_in_gpu
)
argument
.
setSlotValue
(
self
.
pos
,
m
)
argument
.
setSlotValue
(
self
.
pos
,
m
)
if
len
(
self
.
__shape__
)
>
1
:
# The last-two dimenstions are the frame height and width.
# For example, the layout is CHW for 3-D feature of image.
# The H and W are the fram height and width.
h
,
w
=
self
.
__shape__
[
-
2
:]
argument
.
setSlotFrameHeight
(
self
.
pos
,
h
)
argument
.
setSlotFrameWidth
(
self
.
pos
,
w
)
class
SparseBinaryScanner
(
IScanner
):
class
SparseBinaryScanner
(
IScanner
):
...
@@ -166,7 +186,7 @@ class IndexScanner(IScanner):
...
@@ -166,7 +186,7 @@ class IndexScanner(IScanner):
def
pre_scan
(
self
,
dat
):
def
pre_scan
(
self
,
dat
):
self
.
__idx__
+=
1
self
.
__idx__
+=
1
def
finish_pre_scan
(
self
,
argument
):
def
finish_pre_scan
(
self
,
argument
,
dat
=
None
):
self
.
__ids__
=
[
0
]
*
self
.
__idx__
self
.
__ids__
=
[
0
]
*
self
.
__idx__
self
.
__idx__
=
0
self
.
__idx__
=
0
...
@@ -191,8 +211,8 @@ class SequenceScanner(IScanner):
...
@@ -191,8 +211,8 @@ class SequenceScanner(IScanner):
for
each
in
dat
:
for
each
in
dat
:
self
.
__inner_scanner__
.
pre_scan
(
each
)
self
.
__inner_scanner__
.
pre_scan
(
each
)
def
finish_pre_scan
(
self
,
argument
):
def
finish_pre_scan
(
self
,
argument
,
dat
=
None
):
self
.
__inner_scanner__
.
finish_pre_scan
(
argument
)
self
.
__inner_scanner__
.
finish_pre_scan
(
argument
,
dat
)
def
scan
(
self
,
dat
):
def
scan
(
self
,
dat
):
self
.
__seq__
.
append
(
self
.
__seq__
[
-
1
]
+
self
.
get_size
(
dat
))
self
.
__seq__
.
append
(
self
.
__seq__
[
-
1
]
+
self
.
get_size
(
dat
))
...
@@ -233,8 +253,11 @@ class DataProviderConverter(object):
...
@@ -233,8 +253,11 @@ class DataProviderConverter(object):
for
each_step
,
scanner
in
itertools
.
izip
(
each_sample
,
scanners
):
for
each_step
,
scanner
in
itertools
.
izip
(
each_sample
,
scanners
):
scanner
.
pre_scan
(
each_step
)
scanner
.
pre_scan
(
each_step
)
for
scanner
in
scanners
:
# Some scanners, like dense scanner, pre-allocate memory for mini-batch
scanner
.
finish_pre_scan
(
argument
)
# in finish_pre_scan function. The dat[0] is used to calculate the size
# of input data.
for
scanner
,
each_feature
in
itertools
.
izip
(
scanners
,
dat
[
0
]):
scanner
.
finish_pre_scan
(
argument
,
each_feature
)
for
each_sample
in
dat
:
for
each_sample
in
dat
:
for
each_step
,
scanner
in
itertools
.
izip
(
each_sample
,
scanners
):
for
each_step
,
scanner
in
itertools
.
izip
(
each_sample
,
scanners
):
...
...
python/paddle/trainer/PyDataProvider2.py
浏览文件 @
576e7f47
...
@@ -72,9 +72,16 @@ class InputType(object):
...
@@ -72,9 +72,16 @@ class InputType(object):
def
dense_slot
(
dim
,
seq_type
=
SequenceType
.
NO_SEQUENCE
):
def
dense_slot
(
dim
,
seq_type
=
SequenceType
.
NO_SEQUENCE
):
"""
"""
Dense Vector. It means the input feature is dense float vector. For example,
Dense Array. It means the input feature is dense array with float type.
if the input is an image with 28*28 pixels, the input of Paddle neural
For example, if the input is an image with 28*28 pixels, the input of
network should be a dense vector with dimension 784.
Paddle neural network could be a dense vector with dimension 784 or a
numpy array with shape (28, 28).
For the 2-D convolution operation, each sample in one mini-batch must have
the similarly size in PaddlePaddle now. But, it supports variable-dimension
feature across mini-batch. For the variable-dimension, the param dim is not
used. While the data reader must yield numpy array and the data feeder will
set the data shape correctly.
:param dim: dimension of this vector.
:param dim: dimension of this vector.
:type dim: int
:type dim: int
...
@@ -135,6 +142,10 @@ sparse_binary_vector = sparse_non_value_slot
...
@@ -135,6 +142,10 @@ sparse_binary_vector = sparse_non_value_slot
sparse_vector
=
sparse_value_slot
sparse_vector
=
sparse_value_slot
integer_value
=
index_slot
integer_value
=
index_slot
# dense_array can be used for variable-length input feature.
# Each feature is not a vector, but a multi-dimensional array.
dense_array
=
dense_slot
def
dense_vector_sequence
(
dim
):
def
dense_vector_sequence
(
dim
):
"""
"""
...
...
python/paddle/v2/data_type.py
浏览文件 @
576e7f47
...
@@ -16,7 +16,8 @@ import paddle.trainer.PyDataProvider2 as pydp2
...
@@ -16,7 +16,8 @@ import paddle.trainer.PyDataProvider2 as pydp2
import_list
=
[
import_list
=
[
nm
for
nm
in
dir
(
pydp2
)
nm
for
nm
in
dir
(
pydp2
)
if
'_'
in
nm
and
nm
[
0
]
!=
'_'
and
(
'value'
in
nm
or
'vector'
in
nm
)
if
'_'
in
nm
and
nm
[
0
]
!=
'_'
and
(
'value'
in
nm
or
'vector'
in
nm
or
'array'
in
nm
)
]
]
import_list
.
extend
([
'InputType'
])
import_list
.
extend
([
'InputType'
])
...
...
python/paddle/v2/tests/test_data_feeder.py
浏览文件 @
576e7f47
...
@@ -233,6 +233,30 @@ class DataFeederTest(unittest.TestCase):
...
@@ -233,6 +233,30 @@ class DataFeederTest(unittest.TestCase):
self
.
assertEqual
(
out_sparse
.
getSparseRowCols
(
i
),
data
[
i
][
1
])
self
.
assertEqual
(
out_sparse
.
getSparseRowCols
(
i
),
data
[
i
][
1
])
self
.
assertEqual
(
out_index
[
i
],
data
[
i
][
0
])
self
.
assertEqual
(
out_index
[
i
],
data
[
i
][
0
])
def
test_dense_set_shape
(
self
):
# test 2-D data
def
gen_data
(
batch_size
,
shape
):
data
=
[]
for
i
in
xrange
(
batch_size
):
each_sample
=
[]
each_sample
.
append
(
np
.
random
.
random
(
shape
))
data
.
append
(
each_sample
)
return
data
feeder
=
DataFeeder
([(
'image'
,
data_type
.
dense_array
(
2352
))],
{
'image'
:
0
})
arg
=
feeder
(
gen_data
(
32
,
(
3
,
28
,
28
)))
h
=
arg
.
getSlotFrameHeight
(
0
)
w
=
arg
.
getSlotFrameWidth
(
0
)
self
.
assertEqual
(
h
,
28
)
self
.
assertEqual
(
w
,
28
)
arg
=
feeder
(
gen_data
(
32
,
(
3
,
30
,
32
)))
h
=
arg
.
getSlotFrameHeight
(
0
)
w
=
arg
.
getSlotFrameWidth
(
0
)
self
.
assertEqual
(
h
,
30
)
self
.
assertEqual
(
w
,
32
)
if
__name__
==
'__main__'
:
if
__name__
==
'__main__'
:
api
.
initPaddle
(
"--use_gpu=0"
)
api
.
initPaddle
(
"--use_gpu=0"
)
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录