提交 575b8881 编写于 作者: W wangyang59

add readme and comments in demo/gan

上级 93af332e
# Generative Adversarial Networks (GAN)
This demo implements GAN training described in the original GAN paper (https://arxiv.org/abs/1406.2661) and DCGAN (https://arxiv.org/abs/1511.06434).
The general training procedures are implemented in gan_trainer.py. The neural network configurations are specified in gan_conf.py (for synthetic data) and gan_conf_image.py (for image data).
In order to run the model, first download the corresponding data by running the shell script in ./data.
Then you can run the command below. The flag -d specifies the training data (cifar, mnist or uniform) and flag --useGpu specifies whether to use gpu for training (0 is cpu, 1 is gpu).
$python gan_trainer_image.py -d cifar --useGpu 1
The generated images will be stored in ./cifar_samples/
\ No newline at end of file
......@@ -25,8 +25,11 @@ is_generator = mode == "generator"
is_discriminator = mode == "discriminator"
print('mode=%s' % mode)
noise_dim = 10
# the dim of the noise (z) as the input of the generator network
noise_dim = 10
# the dim of the hidden layer
hidden_dim = 15
# the dim of the generated sample
sample_dim = 2
settings(
......@@ -123,7 +126,6 @@ if is_generator_training or is_discriminator_training:
classification_error_evaluator(input=prob, label=label, name=mode+'_error')
outputs(cost)
if is_generator:
noise = data_layer(name="noise", size=noise_dim)
outputs(generator(noise))
......@@ -25,8 +25,14 @@ is_discriminator_training = mode == "discriminator_training"
is_generator = mode == "generator"
is_discriminator = mode == "discriminator"
# The network structure below follows the dcgan paper
# (https://arxiv.org/abs/1511.06434)
print('mode=%s' % mode)
# the dim of the noise (z) as the input of the generator network
noise_dim = 100
# the number of filters in the layer in generator/discriminator that is
# closet to the image
gf_dim = 64
df_dim = 64
if dataSource == "mnist":
......@@ -47,6 +53,19 @@ settings(
def conv_bn(input, channels, imgSize, num_filters, output_x, stride, name,
param_attr, bias_attr, param_attr_bn, bn, trans=False,
act=ReluActivation()):
"""
conv_bn is a utility function that constructs a convolution/deconv layer
with an optional batch_norm layer
:param bn: whether to use batch_norm_layer
:type bn: bool
:param trans: whether to use conv (False) or deconv (True)
:type trans: bool
"""
# calculate the filter_size and padding size based on the given
# imgSize and ouput size
tmp = imgSize - (output_x - 1) * stride
if tmp <= 1 or tmp > 5:
raise ValueError("conv input-output dimension does not fit")
......@@ -240,7 +259,6 @@ if is_generator_training or is_discriminator_training:
classification_error_evaluator(input=prob, label=label, name=mode+'_error')
outputs(cost)
if is_generator:
noise = data_layer(name="noise", size=noise_dim)
outputs(generator(noise))
......@@ -13,20 +13,22 @@
# limitations under the License.
import argparse
import itertools
import random
import numpy
import cPickle
import sys,os
from PIL import Image
from paddle.trainer.config_parser import parse_config
from paddle.trainer.config_parser import logger
import py_paddle.swig_paddle as api
from py_paddle import DataProviderConverter
import matplotlib.pyplot as plt
def plot2DScatter(data, outputfile):
# Generate some test data
'''
Plot the data as a 2D scatter plot and save to outputfile
data needs to be two dimensinoal
'''
x = data[:, 0]
y = data[:, 1]
print "The mean vector is %s" % numpy.mean(data, 0)
......@@ -37,14 +39,19 @@ def plot2DScatter(data, outputfile):
plt.clf()
plt.scatter(x, y)
# plt.show()
plt.savefig(outputfile, bbox_inches='tight')
def CHECK_EQ(a, b):
assert a == b, "a=%s, b=%s" % (a, b)
def copy_shared_parameters(src, dst):
'''
copy the parameters from src to dst
:param src: the source of the parameters
:type src: GradientMachine
:param dst: the destination of the parameters
:type dst: GradientMachine
'''
src_params = [src.getParameter(i)
for i in xrange(src.getParameterSize())]
src_params = dict([(p.getName(), p) for p in src_params])
......@@ -69,14 +76,77 @@ def print_parameters(src):
for p in src_params:
print "Name is %s" % p.getName()
print "value is %s \n" % p.getBuf(api.PARAMETER_VALUE).copyToNumpyArray()
def get_real_samples(batch_size, sample_dim):
return numpy.random.rand(batch_size, sample_dim).astype('float32')
# return numpy.random.normal(loc=100.0, scale=100.0, size=(batch_size, sample_dim)).astype('float32')
def get_fake_samples(generator_machine, batch_size, noise_dim, sample_dim):
gen_inputs = prepare_generator_data_batch(batch_size, noise_dim)
gen_inputs.resize(1)
def load_mnist_data(imageFile):
f = open(imageFile, "rb")
f.read(16)
# Define number of samples for train/test
if "train" in imageFile:
n = 60000
else:
n = 10000
data = numpy.zeros((n, 28*28), dtype = "float32")
for i in range(n):
pixels = []
for j in range(28 * 28):
pixels.append(float(ord(f.read(1))) / 255.0 * 2.0 - 1.0)
data[i, :] = pixels
f.close()
return data
def load_cifar_data(cifar_path):
batch_size = 10000
data = numpy.zeros((5*batch_size, 32*32*3), dtype = "float32")
for i in range(1, 6):
file = cifar_path + "/data_batch_" + str(i)
fo = open(file, 'rb')
dict = cPickle.load(fo)
fo.close()
data[(i - 1)*batch_size:(i*batch_size), :] = dict["data"]
data = data / 255.0 * 2.0 - 1.0
return data
# synthesize 2-D uniform data
def load_uniform_data():
data = numpy.random.rand(1000000, 2).astype('float32')
return data
def merge(images, size):
if images.shape[1] == 28*28:
h, w, c = 28, 28, 1
else:
h, w, c = 32, 32, 3
img = numpy.zeros((h * size[0], w * size[1], c))
for idx in xrange(size[0] * size[1]):
i = idx % size[1]
j = idx // size[1]
img[j*h:j*h+h, i*w:i*w+w, :] = \
((images[idx, :].reshape((h, w, c), order="F").transpose(1, 0, 2) + 1.0) / 2.0 * 255.0)
return img.astype('uint8')
def saveImages(images, path):
merged_img = merge(images, [8, 8])
if merged_img.shape[2] == 1:
im = Image.fromarray(numpy.squeeze(merged_img)).convert('RGB')
else:
im = Image.fromarray(merged_img, mode="RGB")
im.save(path)
def get_real_samples(batch_size, data_np):
return data_np[numpy.random.choice(data_np.shape[0], batch_size,
replace=False),:]
def get_noise(batch_size, noise_dim):
return numpy.random.normal(size=(batch_size, noise_dim)).astype('float32')
def get_fake_samples(generator_machine, batch_size, noise):
gen_inputs = api.Arguments.createArguments(1)
gen_inputs.setSlotValue(0, api.Matrix.createDenseFromNumpy(noise))
gen_outputs = api.Arguments.createArguments(0)
generator_machine.forward(gen_inputs, gen_outputs, api.PASS_TEST)
fake_samples = gen_outputs.getSlotValue(0).copyToNumpyMat()
......@@ -88,41 +158,27 @@ def get_training_loss(training_machine, inputs):
loss = outputs.getSlotValue(0).copyToNumpyMat()
return numpy.mean(loss)
def prepare_discriminator_data_batch(
generator_machine, batch_size, noise_dim, sample_dim):
fake_samples = get_fake_samples(generator_machine, batch_size / 2, noise_dim, sample_dim)
real_samples = get_real_samples(batch_size / 2, sample_dim)
all_samples = numpy.concatenate((fake_samples, real_samples), 0)
all_labels = numpy.concatenate(
(numpy.zeros(batch_size / 2, dtype='int32'),
numpy.ones(batch_size / 2, dtype='int32')), 0)
inputs = api.Arguments.createArguments(2)
inputs.setSlotValue(0, api.Matrix.createGpuDenseFromNumpy(all_samples))
inputs.setSlotIds(1, api.IVector.createGpuVectorFromNumy(all_labels))
return inputs
def prepare_discriminator_data_batch_pos(batch_size, noise_dim, sample_dim):
real_samples = get_real_samples(batch_size, sample_dim)
def prepare_discriminator_data_batch_pos(batch_size, data_np):
real_samples = get_real_samples(batch_size, data_np)
labels = numpy.ones(batch_size, dtype='int32')
inputs = api.Arguments.createArguments(2)
inputs.setSlotValue(0, api.Matrix.createGpuDenseFromNumpy(real_samples))
inputs.setSlotIds(1, api.IVector.createGpuVectorFromNumpy(labels))
inputs.setSlotValue(0, api.Matrix.createDenseFromNumpy(real_samples))
inputs.setSlotIds(1, api.IVector.createVectorFromNumpy(labels))
return inputs
def prepare_discriminator_data_batch_neg(generator_machine, batch_size, noise_dim, sample_dim):
fake_samples = get_fake_samples(generator_machine, batch_size, noise_dim, sample_dim)
def prepare_discriminator_data_batch_neg(generator_machine, batch_size, noise):
fake_samples = get_fake_samples(generator_machine, batch_size, noise)
labels = numpy.zeros(batch_size, dtype='int32')
inputs = api.Arguments.createArguments(2)
inputs.setSlotValue(0, api.Matrix.createGpuDenseFromNumpy(fake_samples))
inputs.setSlotIds(1, api.IVector.createGpuVectorFromNumpy(labels))
inputs.setSlotValue(0, api.Matrix.createDenseFromNumpy(fake_samples))
inputs.setSlotIds(1, api.IVector.createVectorFromNumpy(labels))
return inputs
def prepare_generator_data_batch(batch_size, dim):
noise = numpy.random.normal(size=(batch_size, dim)).astype('float32')
def prepare_generator_data_batch(batch_size, noise):
label = numpy.ones(batch_size, dtype='int32')
inputs = api.Arguments.createArguments(2)
inputs.setSlotValue(0, api.Matrix.createGpuDenseFromNumpy(noise))
inputs.setSlotIds(1, api.IVector.createGpuVectorFromNumpy(label))
inputs.setSlotValue(0, api.Matrix.createDenseFromNumpy(noise))
inputs.setSlotIds(1, api.IVector.createVectorFromNumpy(label))
return inputs
......@@ -140,19 +196,48 @@ def get_layer_size(model_conf, layer_name):
def main():
api.initPaddle('--use_gpu=1', '--dot_period=10', '--log_period=100',
'--gpu_id=2')
gen_conf = parse_config("gan_conf.py", "mode=generator_training")
dis_conf = parse_config("gan_conf.py", "mode=discriminator_training")
generator_conf = parse_config("gan_conf.py", "mode=generator")
parser = argparse.ArgumentParser()
parser.add_argument("-d", "--dataSource", help="mnist or cifar or uniform")
parser.add_argument("--useGpu", default="1",
help="1 means use gpu for training")
parser.add_argument("--gpuId", default="0",
help="the gpu_id parameter")
args = parser.parse_args()
dataSource = args.dataSource
useGpu = args.useGpu
assert dataSource in ["mnist", "cifar", "uniform"]
assert useGpu in ["0", "1"]
api.initPaddle('--use_gpu=' + useGpu, '--dot_period=10', '--log_period=100',
'--gpu_id=' + args.gpuId)
if dataSource == "uniform":
conf = "gan_conf.py"
num_iter = 10000
else:
conf = "gan_conf_image.py"
num_iter = 1000
gen_conf = parse_config(conf, "mode=generator_training,data=" + dataSource)
dis_conf = parse_config(conf, "mode=discriminator_training,data=" + dataSource)
generator_conf = parse_config(conf, "mode=generator,data=" + dataSource)
batch_size = dis_conf.opt_config.batch_size
noise_dim = get_layer_size(gen_conf.model_config, "noise")
sample_dim = get_layer_size(dis_conf.model_config, "sample")
if dataSource == "mnist":
data_np = load_mnist_data("./data/mnist_data/train-images-idx3-ubyte")
elif dataSource == "cifar":
data_np = load_cifar_data("./data/cifar-10-batches-py/")
else:
data_np = load_uniform_data()
if not os.path.exists("./%s_samples/" % dataSource):
os.makedirs("./%s_samples/" % dataSource)
# this create a gradient machine for discriminator
dis_training_machine = api.GradientMachine.createFromConfigProto(
dis_conf.model_config)
# this create a gradient machine for generator
gen_training_machine = api.GradientMachine.createFromConfigProto(
gen_conf.model_config)
......@@ -161,57 +246,64 @@ def main():
logger.info(str(generator_conf.model_config))
generator_machine = api.GradientMachine.createFromConfigProto(
generator_conf.model_config)
dis_trainer = api.Trainer.create(
dis_conf, dis_training_machine)
gen_trainer = api.Trainer.create(
gen_conf, gen_training_machine)
dis_trainer.startTrain()
gen_trainer.startTrain()
# Sync parameters between networks (GradientMachine) at the beginning
copy_shared_parameters(gen_training_machine, dis_training_machine)
copy_shared_parameters(gen_training_machine, generator_machine)
# constrain that either discriminator or generator can not be trained
# consecutively more than MAX_strike times
curr_train = "dis"
curr_strike = 0
MAX_strike = 5
for train_pass in xrange(100):
dis_trainer.startTrainPass()
gen_trainer.startTrainPass()
for i in xrange(1000):
# data_batch_dis = prepare_discriminator_data_batch(
# generator_machine, batch_size, noise_dim, sample_dim)
# dis_loss = get_training_loss(dis_training_machine, data_batch_dis)
for i in xrange(num_iter):
# Do forward pass in discriminator to get the dis_loss
noise = get_noise(batch_size, noise_dim)
data_batch_dis_pos = prepare_discriminator_data_batch_pos(
batch_size, noise_dim, sample_dim)
batch_size, data_np)
dis_loss_pos = get_training_loss(dis_training_machine, data_batch_dis_pos)
data_batch_dis_neg = prepare_discriminator_data_batch_neg(
generator_machine, batch_size, noise_dim, sample_dim)
generator_machine, batch_size, noise)
dis_loss_neg = get_training_loss(dis_training_machine, data_batch_dis_neg)
dis_loss = (dis_loss_pos + dis_loss_neg) / 2.0
# Do forward pass in generator to get the gen_loss
data_batch_gen = prepare_generator_data_batch(
batch_size, noise_dim)
batch_size, noise)
gen_loss = get_training_loss(gen_training_machine, data_batch_gen)
if i % 1000 == 0:
if i % 100 == 0:
print "d_pos_loss is %s d_neg_loss is %s" % (dis_loss_pos, dis_loss_neg)
print "d_loss is %s g_loss is %s" % (dis_loss, gen_loss)
if (not (curr_train == "dis" and curr_strike == MAX_strike)) and ((curr_train == "gen" and curr_strike == MAX_strike) or dis_loss > gen_loss):
# Decide which network to train based on the training history
# And the relative size of the loss
if (not (curr_train == "dis" and curr_strike == MAX_strike)) and \
((curr_train == "gen" and curr_strike == MAX_strike) or dis_loss > gen_loss):
if curr_train == "dis":
curr_strike += 1
else:
curr_train = "dis"
curr_strike = 1
dis_trainer.trainOneDataBatch(batch_size, data_batch_dis_neg)
dis_trainer.trainOneDataBatch(batch_size, data_batch_dis_pos)
# dis_loss = numpy.mean(dis_trainer.getForwardOutput()[0]["value"])
# print "getForwardOutput loss is %s" % dis_loss
dis_trainer.trainOneDataBatch(batch_size, data_batch_dis_pos)
copy_shared_parameters(dis_training_machine, gen_training_machine)
else:
if curr_train == "gen":
curr_strike += 1
......@@ -221,12 +313,15 @@ def main():
gen_trainer.trainOneDataBatch(batch_size, data_batch_gen)
copy_shared_parameters(gen_training_machine, dis_training_machine)
copy_shared_parameters(gen_training_machine, generator_machine)
dis_trainer.finishTrainPass()
gen_trainer.finishTrainPass()
fake_samples = get_fake_samples(generator_machine, batch_size, noise_dim, sample_dim)
plot2DScatter(fake_samples, "./train_pass%s.png" % train_pass)
# At the end of each pass, save the generated samples/images
fake_samples = get_fake_samples(generator_machine, batch_size, noise)
if dataSource == "uniform":
plot2DScatter(fake_samples, "./%s_samples/train_pass%s.png" % (dataSource, train_pass))
else:
saveImages(fake_samples, "./%s_samples/train_pass%s.png" % (dataSource, train_pass))
dis_trainer.finishTrain()
gen_trainer.finishTrain()
......
# Copyright (c) 2016 Baidu, Inc. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
import random
import numpy
import cPickle
import sys,os
from PIL import Image
from paddle.trainer.config_parser import parse_config
from paddle.trainer.config_parser import logger
import py_paddle.swig_paddle as api
import matplotlib.pyplot as plt
def plot2DScatter(data, outputfile):
x = data[:, 0]
y = data[:, 1]
print "The mean vector is %s" % numpy.mean(data, 0)
print "The std vector is %s" % numpy.std(data, 0)
heatmap, xedges, yedges = numpy.histogram2d(x, y, bins=50)
extent = [xedges[0], xedges[-1], yedges[0], yedges[-1]]
plt.clf()
plt.scatter(x, y)
plt.savefig(outputfile, bbox_inches='tight')
def CHECK_EQ(a, b):
assert a == b, "a=%s, b=%s" % (a, b)
def copy_shared_parameters(src, dst):
src_params = [src.getParameter(i)
for i in xrange(src.getParameterSize())]
src_params = dict([(p.getName(), p) for p in src_params])
for i in xrange(dst.getParameterSize()):
dst_param = dst.getParameter(i)
src_param = src_params.get(dst_param.getName(), None)
if src_param is None:
continue
src_value = src_param.getBuf(api.PARAMETER_VALUE)
dst_value = dst_param.getBuf(api.PARAMETER_VALUE)
CHECK_EQ(len(src_value), len(dst_value))
dst_value.copyFrom(src_value)
dst_param.setValueUpdated()
def print_parameters(src):
src_params = [src.getParameter(i)
for i in xrange(src.getParameterSize())]
print "***************"
for p in src_params:
print "Name is %s" % p.getName()
print "value is %s \n" % p.getBuf(api.PARAMETER_VALUE).copyToNumpyArray()
def load_mnist_data(imageFile):
f = open(imageFile, "rb")
f.read(16)
# Define number of samples for train/test
if "train" in imageFile:
n = 60000
else:
n = 10000
data = numpy.zeros((n, 28*28), dtype = "float32")
for i in range(n):
pixels = []
for j in range(28 * 28):
pixels.append(float(ord(f.read(1))) / 255.0 * 2.0 - 1.0)
data[i, :] = pixels
f.close()
return data
def load_cifar_data(cifar_path):
batch_size = 10000
data = numpy.zeros((5*batch_size, 32*32*3), dtype = "float32")
for i in range(1, 6):
file = cifar_path + "/data_batch_" + str(i)
fo = open(file, 'rb')
dict = cPickle.load(fo)
fo.close()
data[(i - 1)*batch_size:(i*batch_size), :] = dict["data"]
data = data / 255.0 * 2.0 - 1.0
return data
# synthesize 2-D uniform data
def load_uniform_data():
data = numpy.random.rand(1000000, 2).astype('float32')
return data
def merge(images, size):
if images.shape[1] == 28*28:
h, w, c = 28, 28, 1
else:
h, w, c = 32, 32, 3
img = numpy.zeros((h * size[0], w * size[1], c))
for idx in xrange(size[0] * size[1]):
i = idx % size[1]
j = idx // size[1]
img[j*h:j*h+h, i*w:i*w+w, :] = \
((images[idx, :].reshape((h, w, c), order="F").transpose(1, 0, 2) + 1.0) / 2.0 * 255.0)
return img.astype('uint8')
def saveImages(images, path):
merged_img = merge(images, [8, 8])
if merged_img.shape[2] == 1:
im = Image.fromarray(numpy.squeeze(merged_img)).convert('RGB')
else:
im = Image.fromarray(merged_img, mode="RGB")
im.save(path)
def get_real_samples(batch_size, data_np):
return data_np[numpy.random.choice(data_np.shape[0], batch_size,
replace=False),:]
def get_noise(batch_size, noise_dim):
return numpy.random.normal(size=(batch_size, noise_dim)).astype('float32')
def get_fake_samples(generator_machine, batch_size, noise):
gen_inputs = api.Arguments.createArguments(1)
gen_inputs.setSlotValue(0, api.Matrix.createDenseFromNumpy(noise))
gen_outputs = api.Arguments.createArguments(0)
generator_machine.forward(gen_inputs, gen_outputs, api.PASS_TEST)
fake_samples = gen_outputs.getSlotValue(0).copyToNumpyMat()
return fake_samples
def get_training_loss(training_machine, inputs):
outputs = api.Arguments.createArguments(0)
training_machine.forward(inputs, outputs, api.PASS_TEST)
loss = outputs.getSlotValue(0).copyToNumpyMat()
return numpy.mean(loss)
def prepare_discriminator_data_batch_pos(batch_size, data_np):
real_samples = get_real_samples(batch_size, data_np)
labels = numpy.ones(batch_size, dtype='int32')
inputs = api.Arguments.createArguments(2)
inputs.setSlotValue(0, api.Matrix.createDenseFromNumpy(real_samples))
inputs.setSlotIds(1, api.IVector.createVectorFromNumpy(labels))
return inputs
def prepare_discriminator_data_batch_neg(generator_machine, batch_size, noise):
fake_samples = get_fake_samples(generator_machine, batch_size, noise)
labels = numpy.zeros(batch_size, dtype='int32')
inputs = api.Arguments.createArguments(2)
inputs.setSlotValue(0, api.Matrix.createDenseFromNumpy(fake_samples))
inputs.setSlotIds(1, api.IVector.createVectorFromNumpy(labels))
return inputs
def prepare_generator_data_batch(batch_size, noise):
label = numpy.ones(batch_size, dtype='int32')
inputs = api.Arguments.createArguments(2)
inputs.setSlotValue(0, api.Matrix.createDenseFromNumpy(noise))
inputs.setSlotIds(1, api.IVector.createVectorFromNumpy(label))
return inputs
def find(iterable, cond):
for item in iterable:
if cond(item):
return item
return None
def get_layer_size(model_conf, layer_name):
layer_conf = find(model_conf.layers, lambda x: x.name == layer_name)
assert layer_conf is not None, "Cannot find '%s' layer" % layer_name
return layer_conf.size
def main():
parser = argparse.ArgumentParser()
parser.add_argument("-d", "--dataSource", help="mnist or cifar or uniform")
parser.add_argument("--useGpu", default="1",
help="1 means use gpu for training")
parser.add_argument("--gpuId", default="0",
help="the gpu_id parameter")
args = parser.parse_args()
dataSource = args.dataSource
useGpu = args.useGpu
assert dataSource in ["mnist", "cifar", "uniform"]
assert useGpu in ["0", "1"]
api.initPaddle('--use_gpu=' + useGpu, '--dot_period=10', '--log_period=100',
'--gpu_id=' + args.gpuId)
if dataSource == "uniform":
conf = "gan_conf.py"
num_iter = 10000
else:
conf = "gan_conf_image.py"
num_iter = 1000
gen_conf = parse_config(conf, "mode=generator_training,data=" + dataSource)
dis_conf = parse_config(conf, "mode=discriminator_training,data=" + dataSource)
generator_conf = parse_config(conf, "mode=generator,data=" + dataSource)
batch_size = dis_conf.opt_config.batch_size
noise_dim = get_layer_size(gen_conf.model_config, "noise")
if dataSource == "mnist":
data_np = load_mnist_data("./data/mnist_data/train-images-idx3-ubyte")
elif dataSource == "cifar":
data_np = load_cifar_data("./data/cifar-10-batches-py/")
else:
data_np = load_uniform_data()
if not os.path.exists("./%s_samples/" % dataSource):
os.makedirs("./%s_samples/" % dataSource)
# this create a gradient machine for discriminator
dis_training_machine = api.GradientMachine.createFromConfigProto(
dis_conf.model_config)
gen_training_machine = api.GradientMachine.createFromConfigProto(
gen_conf.model_config)
# generator_machine is used to generate data only, which is used for
# training discrinator
logger.info(str(generator_conf.model_config))
generator_machine = api.GradientMachine.createFromConfigProto(
generator_conf.model_config)
dis_trainer = api.Trainer.create(
dis_conf, dis_training_machine)
gen_trainer = api.Trainer.create(
gen_conf, gen_training_machine)
dis_trainer.startTrain()
gen_trainer.startTrain()
copy_shared_parameters(gen_training_machine, dis_training_machine)
copy_shared_parameters(gen_training_machine, generator_machine)
# constrain that either discriminator or generator can not be trained
# consecutively more than MAX_strike times
curr_train = "dis"
curr_strike = 0
MAX_strike = 5
for train_pass in xrange(100):
dis_trainer.startTrainPass()
gen_trainer.startTrainPass()
for i in xrange(num_iter):
noise = get_noise(batch_size, noise_dim)
data_batch_dis_pos = prepare_discriminator_data_batch_pos(
batch_size, data_np)
dis_loss_pos = get_training_loss(dis_training_machine, data_batch_dis_pos)
data_batch_dis_neg = prepare_discriminator_data_batch_neg(
generator_machine, batch_size, noise)
dis_loss_neg = get_training_loss(dis_training_machine, data_batch_dis_neg)
dis_loss = (dis_loss_pos + dis_loss_neg) / 2.0
data_batch_gen = prepare_generator_data_batch(
batch_size, noise)
gen_loss = get_training_loss(gen_training_machine, data_batch_gen)
if i % 100 == 0:
print "d_pos_loss is %s d_neg_loss is %s" % (dis_loss_pos, dis_loss_neg)
print "d_loss is %s g_loss is %s" % (dis_loss, gen_loss)
if (not (curr_train == "dis" and curr_strike == MAX_strike)) and \
((curr_train == "gen" and curr_strike == MAX_strike) or dis_loss > gen_loss):
if curr_train == "dis":
curr_strike += 1
else:
curr_train = "dis"
curr_strike = 1
dis_trainer.trainOneDataBatch(batch_size, data_batch_dis_neg)
dis_trainer.trainOneDataBatch(batch_size, data_batch_dis_pos)
copy_shared_parameters(dis_training_machine, gen_training_machine)
else:
if curr_train == "gen":
curr_strike += 1
else:
curr_train = "gen"
curr_strike = 1
gen_trainer.trainOneDataBatch(batch_size, data_batch_gen)
copy_shared_parameters(gen_training_machine, dis_training_machine)
copy_shared_parameters(gen_training_machine, generator_machine)
dis_trainer.finishTrainPass()
gen_trainer.finishTrainPass()
fake_samples = get_fake_samples(generator_machine, batch_size, noise)
if dataSource == "uniform":
plot2DScatter(fake_samples, "./%s_samples/train_pass%s.png" % (dataSource, train_pass))
else:
saveImages(fake_samples, "./%s_samples/train_pass%s.png" % (dataSource, train_pass))
dis_trainer.finishTrain()
gen_trainer.finishTrain()
if __name__ == '__main__':
main()
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册